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Abstract

We study Abelian and non-Abelian Chern-Simons models on manifoldsM of the formM =
Σ × S1, whereΣ is a compact oriented surface. By applying the “torus gauge fixing” proce-
dure of Blau and Thompson we derive a heuristic integral formula for the corresponding Wilson
loop observables (WLOs) which has some features that make it a promising starting point for
the search of a rigorous path integral representation for the WLOs. For the special caseΣ = S2

andG = U(1), G being the structure group of the model, we indeed obtain a rigorous version of
the right-hand side of the aforementioned heuristic formula and thus a rigorous path integral rep-
resentation of the WLOs in terms of infinite-dimensional oscillatory integrals. This is achieved
by combining certain regularization procedures like “loop smearing” and “framing” with meth-
ods from white noise analysis. We expect that similar considerations will eventually lead to a
rigorous path integral representation of the WLOs also for non-Abelian Chern-Simons models
on M = S2 × S1 and to a new and purely geometric derivation of the R-matrices of Jones and
Turaev.
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1. Introduction

In recent years there has been considerable interest in the Chern-Simons gauge theory.
After Witten [32] succeeded in computing the partition function and the Wilson loop
observables (WLOs) for various compact base manifoldsM and structure groupsG the
Chern-Simons gauge theory was studied intensively by many different authors, see, e.g.,
[16,17,8,7,13,5,1,2].

However, even today there are still several important open questions in the field. For
example, by now only in the case of AbelianG it has been possible to give a mathematically
rigorous realization of the Feynman path integrals representing the Wilson loop observables,
see, e.g.,[3,25]. The analogous problem for non-AbelianG and general base manifolds
M seems to be very hard. If one restricts oneself to base manifoldsM of product form
M = Σ ×N, whereΣ is an oriented surface andN ∈ {R, S1} the situation can be improved
by applying suitable gauges which are then available. In[4,20,21]the special caseΣ = R

2,
N = R, was studied in detail and it was shown that using axial gauge fixing it is indeed
possible to define and compute the WLOs rigorously. The values for the WLOs which were
obtained in[21] are similar to but do not totally agree with those values obtained before
in the physics literature. It was conjectured in[21] that the origin for this deviation lies in
the fact that the manifoldR3 ∼= R

2 × R is non-compact. In the present paper we will test
this conjecture by studying the compact product manifoldsM of the formM = Σ × S1

using a gauge fixing procedure which we will call “quasi-axial gauge fixing” in order to
emphasize its similarity to axial gauge fixing in the case ofM = R

2 × R. Using quasi-axial
gauge fixing, which can be applied in those cases whereΣ or G is simply-connected, we
will first derive a heuristic formula expressing the WLOs by certain multiple integrals, see
(6.3). We observe that the two inner integrals in6.3are of “Gaussian type” and we therefore
expect that by combining constructions from white noise analysis with certain regularization
procedures like “loop smearing” and “framing” (cf.Section 9) one can eventually obtain a
rigorous version of the right-hand side of (6.3) and consequently also a rigorous definition
of the WLOs in terms of path integrals. In fact, for the special caseG = U(1) we carry out
the details of this approach and later also compute the values of the WLOs explicitly, cf.
Sections 7–11.

Before one begins to study this approach more closely also for non-AbelianG it is rea-
sonable to ask first whether one can simplify the integral expressions in (6.3) by replacing
“quasi-axial gauge fixing” by a related gauge fixing procedure which was called “torus gauge
fixing” in [10,11]. If Σ is non-compact this is indeed possible and as we will show in[18]
when carrying out the details of this Ansatz one can obtain rigorous integral representations
for the WLOs which can be computed explicitly (cf.Section 11). If Σ is compact, which is
the case we are mainly interested in, one has to be more careful because in this case – due to
certain topological obstructions (cf.Proposition 3.4and[12]) – it is not clear whether torus
gauge fixing is really a “proper” gauge fixing. Anyhow, we believe that also for compactΣ it
will eventually be possible to define and compute the WLOs for non-AbelianG after modi-
fying our approach in a suitable way. InSection 11, we will discuss this point in more detail.

The present paper is organized as follows: after recalling some elementary but important
results inSection 2we introduce inSection 3quasi-axial and torus gauge fixing for manifolds
of the formΣ × S1. We then analyze when quasi-axial gauge (resp. torus gauge) is a
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“proper” gauge in the sense that at least every “regular” 1-form, i.e., every element of
Areg (cf. Section 3.1), is gauge equivalent to a quasi-axial 1-form (resp. a 1-form in the
torus gauge). In those situations in which quasi-axial gauge and torus gauge are “proper”
gauges we then compute the Faddeev–Popov determinants for these gauge fixing procedures,
seeSection 4. In Section 5, we show how the action function of Chern-Simons models
on manifolds of the formΣ × S1 simplifies when restricted to the space of quasi-axial
1-forms.

In Section 6, we combine the results ofSections 4 and 5and derive the three key formulae
of this paper, i.e.,Eqs. (6.3), (6.4), and (6.6). In order to find a rigorous realization of the
right-hand sides of(6.4) and (6.6)we recall inSection 7some basic results from white
noise analysis. These results are used inSection 8for finding a rigorous realization of the
heuristic integral functional

∫ · · ·dµ̂⊥B appearing in(6.4) and (6.6). If one wants to make
rigorous sense of the whole inner integral in(6.4) and (6.6)it seems to be necessary to use
two regularization procedures which we call “loop smearing” and “framing”. These two
regularization procedures are introduced inSection 9.

In Section 10.1, we compute the inner integral in(6.4) for the special case whereG =
U(1). Finally, inSection 10.2we also perform the outer integrations appearing in(6.4). In
the present paper this is done at a heuristic level. We will sketch in[18] how one can obtain
a rigorous treatment of the outer integrations as well.
Note: The first part of the present paper, i.e.,Sections 2–5, is based on[19] which

was written before we became aware of the work in[10–12]. Although the presentation
of the results inSections 2–5is tailored to the requirements inSections 6–11and is self-
contained we recommend to our readers, especially to those with a physics background,
also to study the relevant sections in[10–12]as the presentation of the material given there
differs considerably from our presentation and provides a complementary point of view.

2. Preliminaries

2.1. Basic definitions

Let M be a connected differentiable manifold andG a compact connected Lie group.
Without loss of generality we will assume thatG is a Lie subgroup ofU(N), N ∈ N. We
will identify the Lie algebrag ofGwith a Lie subalgebra of the Lie algebrau(N) of U(N).

Let Ad denote the right operation ofGon itself by inner automorphisms. For everyg ∈ G

we will denote the corresponding orbit, i.e., the conjugacy class ofg, by [g]. The set of all
orbits is denoted byG/Ad(G). The vector space of all smoothg-valued 1-forms onM will
be denoted byAM or simply byA. ByGM or byGwe will denote the group of all smoothG-
valued mappings onM. It is well-known that the space of connection 1-forms on the trivial
principal fiber bundleP(M,G) with groupGand base manifoldM can be identified withA
and the gauge group ofP(M,G) with the groupG. Given these identifications the operation
of the gauge group on the space of connection 1-forms induces a right-operation· : A×
G→ A given byA ·Ω := AΩ := Ω−1 dΩ+Ω−1AΩ for A ∈ A, Ω ∈ G. The orbit of an
elementA ∈ A under this operation will be denoted by [A] and the set of all orbits byA/G.
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2.2. Basic results concerning the caseM = S1

Let M = S1, let iS1 (or simply i) denote the mapping [0,1]  u �→ exp(2πiu) ∈ {z ∈
C | ‖z‖ = 1} ∼= S1 and sett0 := iS1(0) ∈ S1. The restriction ofiS1 onto [0,1), which is a
bijective mapping [0,1)→ S1, will also be denoted byiS1 and its inverse will be denoted
by i−1

S1 . i′
S1(u), u ∈ [0,1], will denote the tangent vector ofS1 in the pointiS1(u) which is

induced by the curveiS1. Finally, by ∂/∂t we will denote the vector field onS1 given by
∂/∂t(iS1(u)) = i′

S1(u) for u ∈ [0,1] and by dt the real-valued 1-form onS1 which is dual to
∂/∂t.

For A ∈ A let PA denote the unique solutionP : [0,1] → G of the ODE d/dtP(t)−
P(t) · Ai

S1(t)(i′S1(t)) = 0,P(0)= 1. We setPt(A) := PA(t),A ∈ A, t ∈ [0,1]. Observe that
P1(A) is equal to Hol(A; iS1), i.e., the holonomy ofA around the loopiS1.

Finally, let G̃ denote the subgroup ofG given byG̃ := {Ω ∈ G|Ω(t0) = 1}.
Proposition 2.1.

(i) The map̃j : A/G̃→ G given byj̃([A]) = Hol(A; iS1) for all A ∈ A is a well-defined
bijection.

(ii) Themapj : A/G→ G/Ad(G) given byj([A]) = [Hol(A; iS1)] for all A ∈ A is a well-
defined bijection.

Proof. We will only prove part (i) of the proposition. The proof of part (ii) will
then be obvious. It is easy to see thatj̃ is well-defined. Moreover, from the sur-
jectivity of exp :g→ G (G was assumed to be compact and connected) we obtain
j̃(A/G̃) ⊃ {Hol(B dt; iS1) | B ∈ g} = {exp(B) | B ∈ g} = G so j̃ is surjective, too. Fi-
nally, let A,A′ ∈ A such thatj̃([A]) = j̃([A′]), i.e., Hol(A; iS1) = Hol(A′; iS1), and let
g denote the mapping [0,1] → G given by g(t) = Pt(A′)−1 · Pt(A) for all t ∈ [0,1].
From Hol(A; iS1) = Hol(A′; iS1) we getg(0)= 1= g(1) so the mapping̃Ω := g ◦ i−1

S1 :

S1 → G is continuous and̃Ω(t0) = 1. One can show that̃Ω is C∞, from which Ω̃ ∈
G̃ follows. A short computation then shows thatA = A′ · Ω̃. This proves that̃j is
injective. �

Corollary 2.2.

(i) Let S be a subset ofg which fulfills exp(B′) �= exp(B) for B,B′ ∈ S, B′ �=
B, and which has the additional property thatG = {exp(B) | B ∈ S}. Then
the set {B dt | B ∈ S} is a complete and minimal system of representatives of
A/G̃.

(ii) Let R be a subset ofgwhich fulfillsexp(B) �= exp(B′) forB,B′ ∈ R,B �= B′,andwhich
has the additional property that{exp(B)|B ∈ R} is a complete and minimal system of
representatives ofG/Ad(G). Then the set{B dt | B ∈ R} is a complete and minimal
system of representatives ofA/G.

Remark 2.1. The corollary above implies that the mappingΦ̃S1 : g× G̃  (B, Ω̃) �→
(B dt) · Ω̃ ∈ A is surjective. LetT be a maximal torus and lett denote its Lie algebra.
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From the fundamental theorem on maximal tori (cf., e.g., Theorem 1.6 in[14], Chap. IV)
it follows that also the mappingΦS1 : t× G  (B,Ω) �→ (B dt) ·Ω ∈ A is surjective: as
every elementg ∈ G is contained in a maximal torus and all the maximal tori are pairwise
conjugated the setR in the assertion ofCorollary 2.2(ii) can always be chosen to be a subset
of the Lie algebrat of the maximal torusT of G. For example, in the special case where
G is semisimple it is possible and natural to chooseR such thatP̄ ⊃ R ⊃ P , whereP is a
fixed alcove oft (cf. Section V.7 in[14]).

Proposition 2.3. LetA ∈ A. The stabilizerSA of A w.r.t. theG-operation onA is given by

SA = {ωA
g ◦ i−1

S1 | g ∈ C(Hol(A; iS1))} ⊂ G

whereC(Hol(A; iS1)) is the centralizer ofHol(A; iS1) in G and whereωA
g : [0,1] → G is

given byωA
g (t) = Pt(A)−1 · g · Pt(A) for all t ∈ [0,1].

Proposition 2.3is easy to prove if one takes into account thatAS1 (resp.GS1) can be
considered as a subspace ofAR (resp. as a subgroup ofGR).

From Proposition 2.3it follows immediately that̃G operates freely onA. Combining
this withCorollary 2.2(i) we arrive at the following result.

Proposition 2.4. LetS ⊂ g be as in Corollary2.2 (i).Then the mappingψS : G× G̃→ A
given by(exp(B), Ω̃) �→ (B dt) · Ω̃ for all B ∈ S, Ω̃ ∈ G̃ is a well-defined bijection.

3. Quasi-axial gauge fixing and torus gauge fixing for manifolds of the form
M = Σ × S1

Let us now assume thatM is of the formM = Σ × S1 whereΣ is a connected
smooth manifold. BỹG we denote the subgroup ofG given byG̃ := {Ω ∈ G | Ω((σ, t0)) =
1 for allσ ∈ Σ}.

The 1-form dt (resp. the vector field∂/∂t) onS1 induces a 1-form (resp. a vector field)
onM which will again be denoted by dt (resp.∂/∂t).

We observe thatA = A⊥ ⊕A||, where

A⊥ := {A ∈ A | A(∂/∂t) = 0}, A|| := {B dt | B ∈ C∞(M, g)}

For everyA ∈ A, A⊥ andA|| will denote the unique elements ofA⊥ resp.A|| such that
A = A⊥ + A|| holds. Moreover, for a givenA ∈ Awe setA0 := A(∂/∂t) ∈ C∞(M, g), i.e.,
A0 is the element ofC∞(M, g) given byA|| = A0 dt.

Let T be a maximal torus ofG and let us denote the Lie algebra ofT by t. An elementA
of A will be called “quasi-axial” (resp. “in theT -torus gauge”) if the functionsA0((σ, ·)),
σ ∈ Σ, on S1 are constant (resp. constant andt-valued). We will denote the set of all
quasi-axial elements (resp. all elements in theT -torus gauge) ofA byAqax (resp.Aqax(T )).
Clearly, we have

Aqax = A⊥ ⊕ {B dt | B ∈ C∞(Σ, g)}, Aqax(T ) = A⊥ ⊕ {B dt | B ∈ C∞(Σ, t)}
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(here we have identifiedC∞(Σ, g) with the obvious subspace ofC∞(M, g)).
In the following two subsections we will study the two mappings

Φ̃ : Aqax × G̃  (A, Ω̃) �→ A · Ω̃ ∈ A, Φ : Aqax(T )× G  (A,Ω) �→ A ·Ω ∈ A

which generalize the two mappings inRemark 2.1. In particular, we will analyze under
what conditions one can expectΦ̃ andΦ to be “essentially” surjective.

Clearly, ifG is Abelian there is a unique maximal torusT of G, namelyT = G, so in
this situation we haveAqax(T ) = Aqax andΦ̃ = Φ.

3.1. The mapping̃Φ

Let Greg denote the set of regular elements ofG, i.e., the set of allg ∈ G which are
contained in a unique maximal torus ofG. Similarly, let greg denote the set of regular
elements ofg, i.e., the set of allB ∈ g which are contained in a unique maximal Abelian
Lie subalgebra ofg. We setg′reg := exp−1(Greg).

It is not difficult to see thatg ∈ Greg (resp.B ∈ greg) if and only if the set of fix points
of Ad(g) (resp. the kernel of ad(B)) is a maximal Abelian Lie subalgebra ofg. From this it
follows thatg′reg⊂ greg.

Let us setAreg := {A ∈ A | ∀ σ ∈ Σ : Hol(A; (σ, iS1)) ∈ Greg}. Clearly, everyA ∈ Areg
gives rise to a functionfA : Σ → Greg given by

fA(σ) = Hol(A; (σ, iS1)) = Hol(A0((σ, ·)) dt; iS1) for all σ ∈ Σ (3.1)

Remark 3.1. Note that the codimension ofG\Greg in G is at least 3 (cf., e.g., the proof of
Lemma 7.5 in[14], Chap. V). This means that if dim(Σ) ≤ 2 then “almost all” elements
of C∞(Σ,G) will be contained inC∞(Σ,Greg) and “almost all” elements ofA will be
contained inAreg. This heuristic argument will be of importance inSection 4.

One can show that the mapping exp :g′reg→ Greg is a covering ofGreg (cf., e.g., the proof
of Prop. 7.11 in V.7 in[14]). If Σ is simply connected the Lifting Theorem implies that
every smooth mappingf : Σ → Greg has a smooth lift w.r.t. this covering. The same is
true if G is simply-connected because then alsoGreg is simply-connected (cf. Sec. V.7 in
[14]) and consequently exp :g′reg→ Greg is then a trivial covering.

In order to obtain uniqueness for the lift of a smooth mappingf : Σ → Greg let us fix a
pointσ0 ∈ Σ and a setS as inCorollary 2.2(i). Then, ifΣ orG is simply-connected, there
is a unique smooth lift̃f such thatf̃ (σ0) ∈ S holds. This lift will be denoted bỹfσ0,S .

Proposition 3.1. If Σ orG is simply-connected andσ0, S are as above then the mapping

Ψ̃σ0,S : A⊥ × C∞(Σ,Greg)× G̃  (A⊥, f, Ω̃) �→ (A⊥ + f̃σ0,Sdt) · Ω̃ ∈ A

is injective andImage(̃Ψσ0,S) ⊃ Areg.

Proof.

(i) Image(Ψ̃σ0,S) ⊃ Areg: Let A ∈ Areg and letfA : Σ → Greg be as in (3.1). It is not
difficult to see thatf := fA is smooth sof̃ := f̃σ0,S is well-defined. Now we can



A. Hahn / Journal of Geometry and Physics 53 (2005) 275–314 281

apply for everyσ ∈ Σ the surjectivity statement ofProposition 2.4and thus we obtain
a family {Ω̃σ | σ ∈ Σ} of elements of̃GS1 such that

(f̃ (σ) dt) · Ω̃σ = A0(σ, ·) dt (3.2)

where dt is the 1-form onS1 defined inSection 2.
One can show that the functioñΩ : M → G given byΩ̃(σ, t) = Ω̃σ(t) is smooth and
thus inGM . From (3.2) andLemma 1below it follows f̃ = (A · Ω̃−1)0. Thus, we get
(A · Ω̃−1)− f̃ dt ∈ A⊥ and finallyA = Ψ̃σ0,S((A · Ω̃−1)− f̃ dt, f, Ω̃)).

(ii) Ψ̃σ0,S is injective: Let (A⊥1 , f1, Ω̃1), (A⊥2 , f2, Ω̃2) ∈ A⊥ × C∞(Σ,Greg)× G̃ with
Ψ̃σ0,S(A⊥1 , f1, Ω̃1) = Ψ̃σ0,S(A⊥2 , f2, Ω̃2) =: A. Then it is clear that (3.1) holds with
fA replaced byf1 and with fA replaced byf2, from which f1 = f2 and there-
fore also (̃f1)σ0,S = (f̃2)σ0,S =: f̃ follows. So we get (̃f (σ) dt) · Ω̃1(σ, ·) = (f̃1(σ) dt) ·
Ω̃1(σ, ·) (∗)= A0(σ, ·) dt

(∗∗)= (f̃2(σ) dt) · Ω̃2(σ, ·) = (f̃ (σ) dt) · Ω̃2(σ, ·) for every σ ∈ Σ.
Here steps (∗) and (∗∗) follow from Lemma 1below. From the injectivity part of
Proposition 2.4it then follows thatΩ̃1(σ, ·) = Ω̃2(σ, ·) for all σ ∈ Σ, i.e., Ω̃1 = Ω̃2.
This impliesA⊥1 = A⊥2 . �

Corollary 3.2. If Σ or G is simply-connected thenImage(̃Φ) ⊃ Areg.

The proof of the following Lemma, which we have used above, is straightforward and will
be omitted.

Lemma 1. Let Â ∈ A, Ω̂ ∈ G. Then(Â0(σ, ·) dt) · Ω̂(σ, ·) = (Â · Ω̂)0(σ, ·) dt for all σ ∈ Σ

wheredt denotes the 1-form onS1 defined inSection 2.

Remark 3.2. If G is Abelian thenG = Greg so if Σ is simply-connected theñΨσ0,S :
A⊥ × C∞(Σ,G)× G̃→ A is a bijection and̃Φ is surjective.

3.2. The mappingΦ

LetT be a fixed maximal torus ofG. The Lie algebra ofT will be denoted byt. Moreover,
we setTreg := T ∩Greg andt′reg := t ∩ g′reg. Note thatt′reg is just the union of the alcoves

of t. One can show that exp−1(Treg) ⊂ t which impliest′reg= exp−1(Treg).

Proposition 3.3. LetΣ orG be simply-connected. Then the following three statements are
equivalent:

(i) Image(Φ) ⊃ Areg
(ii) ∀ f ∈ C∞(Σ,Greg) : ∃g ∈ C∞(Σ,G), t ∈ C∞(Σ, Treg) : g · t · g−1 = f

(iii) Every smooth mappingh : Σ → G/T admits a smooth lift for the fibre bundleπ :
G→ G/T .

Proof. (ii) ⇒ (i): Let A ∈ Areg. Setf := fA ∈ C∞(Σ,Greg) and chooseg ∈ C∞(Σ,G)
and t ∈ C∞(Σ, Treg) such thatg · t · g−1 = f holds. Finally, letΩ0 ∈ G be given by
Ω0(σ, u) = g(σ) for all σ ∈ Σ, u ∈ S1. From Corollary 3.2 we know that there is a
Aq ∈ Aqax and aΩ̃ ∈ G̃ such thatΦ̃(Aq, Ω̃) = A. Clearly, (Aq ·Ω0) · (Ω−1

0 · Ω̃) = A and,
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taking into account thatt′reg= exp−1(Treg), it is not difficult to see thatAq ·Ω0 ∈ Aqax(T )
soA ∈ Image(Φ) follows.

(i) ⇒ (ii): Let f ∈ C∞(Σ,Greg) be arbitrary. AsΣ or G is simply connected there is
a B ∈ C∞(Σ, g′reg) such that exp◦B = f (cf. the discussion beforeProposition 3.1). Set
A := B dt ∈ A. Clearly,A ∈ Areg so from (i) it follows that there is aAq ∈ Aqax(T ) and
aΩ ∈ G such thatΦ(Aq,Ω) = A. Obviously, we havefAq ∈ C∞(Σ, Treg) andf = fA =
g · fAq · g−1, whereg ∈ C∞(Σ,G) is given byΩ−1(σ,0)= g(σ) for all σ ∈ Σ.

(iii) ⇒ (ii): Let f ∈ C∞(Σ,Greg). In order to find ag ∈ C∞(Σ,G) and at ∈ C∞(Σ, Treg)
with g · t · g−1 = f we consider the covering

θ : G/T × Treg  (gT, t) �→ g · t · g−1 ∈ Greg

ofGreg, cf. Lemma 7.4 in[14], Chap. V. AsΣ is simply-connected (resp.Gand therefore also
Greg are simply-connected) the Lifting Theorem (resp. the triviality ofθ : G/T × Treg→
Greg) implies thatf has a lift (ḡ, t) ∈ C∞(Σ,G/T )× C∞(Σ, Treg) ∼= C∞(Σ,G/T × Treg).
From (iii) it follows thatḡ : Σ → G/T can be lifted to a smooth mappingg : Σ → G. We
see immediately thatg · t · g−1 = f , wheret is as above.

(ii) ⇒ (iii): Let h ∈ C∞(Σ,G/T ). For fixed t0 ∈ Treg let ft0 ∈ C∞(Σ,Greg) be
given by ft0(σ) = θ(h(σ), t0) for all σ ∈ Σ. From (ii) it follows that there are func-
tions g ∈ C∞(Σ,G) and t ∈ C∞(Σ, Treg) such thatg · t · g−1 = ft0. Settingḡ := π ◦ g,
whereπ : G→ G/T is the canonical projection we haveθ(ḡ(σ), t(σ)) = ft0(σ) for all
σ ∈ Σ. The Weyl groupW(G, T ) = N(T )/T of (G, T ) operates freely from the left
on G/T × Treg by nT · (g′T, t′) = (g′T · n−1, n · t′ · n−1) = (g′n−1T, n · t′ · n−1) for all
n ∈ N(T ), g′ ∈ G, t′ ∈ T (note thatn−1T = Tn−1 if n ∈ N(T )). The orbits of this op-
eration are just the fibers of the coveringθ : G/T × Treg→ Greg (cf. the proof of Lemma
7.4 in [14], Chap. V). Thus, there is an ∈ N(T ) such thatnT · (ḡ(σ), t(σ)) = (h(σ), t0)
holds forσ = σ0 and therefore for allσ ∈ Σ. SoΣ  σ �→ g(σ) · n−1 ∈ G is a smooth lift
oft h. �

From Section 4on we will only study manifoldsΣ which are two-dimensional and
from Section 5on we will demand additionally thatΣ is oriented.Proposition 3.4below is
adapted to this situation. As we will explain inRemark 3.3below it follows from the general
considerations in[12] that, forG andΣ as in the assumption ofProposition 3.4, statement
(iii) and thus also statement (i) ofProposition 3.3are fulfilled iff Σ is non-compact. For
the convenience of the reader we will present an alternative proof ofProposition 3.4which
does not make use of obstruction theory and of universal bundles and is thus (somewhat)
more elementary.

Proposition 3.4. Let G orΣ be simply-connected. Additionally, let us assume thatΣ is
two-dimensional and oriented andG non-Abelian. ThenImage(Φ) ⊃ Aregholds if and only
if Σ is non-compact.

Proof. First we observe that the assumptions onΣ andG imply that every continuous map
Σ → G is 0-homotopic, i.e.

#[Σ,G] = 1 (3.3)
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This can be seen as follows: IfG is simply-connected then because ofπ2(G) = 0 (cf.,
e.g., Theorem 7.1 in[14], Chap. V) it is also 2-connected and as dim(Σ) = 2 Eq. (3.3)
follows from Cor. 14 in[29], Chap. 7, Sec. 6. IfG is not simply-connected thenΣ must be
simply-connected, which means that we have eitherΣ ∼= R

2 or Σ ∼= S2. If Σ ∼= R
2 then

Eq. (3.3) follows immediately from the fact thatR2 is contractible. IfΣ ∼= S2 thenEq. (3.3)
is implied byπ2(G) = 0.

From Eq. (3.3) and the fact thatπ : G→ G/T is a fibration, i.e., has the homotopy
lifting property, we can conclude that statement (iii) ofProposition 3.3and therefore also
Image(Φ) ⊃ Areg will hold if and only if

#
[
Σ,G/T

] = 1 (3.4)

Let us now distinguish between the following two cases:
(i) Σ is non-compact: Let us pick a complex-analytic structure onΣ. ThenΣ is a non-

compact Riemannian surface and hence a so-called Stein space. From this it follows, thatΣ

can be embedded bianalytically as a closed subset ofC
n for suitablen ∈ N. From Theorem

7.2 in [26] it follows thatΣ is homotopy equivalent to a one-dimensional CW-complex.
As on the other handG/T is simply-connected (cf.[14], Chap. V, Prop. 7.6)Eq. (3.4) is
implied by Cor. 14 in[29], Chap. 7, Sec. 6.

(ii) Σ is compact: In this case,Eq. (3.4) doesnot hold. In order to show this it is
enough to find two continuous mapsf : Σ → S2 andg : S2 → G/T such that (g ◦ f )∗ :
H2(Σ,Z) → H2(G/T,Z) is non-trivial. We have assumed above thatG is non-Abelian so1

π2(G/T ) �= 0. As π2(S2) ∼= Z this means that we can find a continuous mapg : S2 →
G/T such thatg∗ : π2(S2) → π2(G/T ) is non-trivial.π2(G/T ) is torsion-free sog∗ is
injective. AsG/T is simply-connected the Hurewicz Theorem implies that also the induced
homomorphism on the second homology groups, i.e.,g∗ : H2(S2,Z) → H2(G/T,Z) is
injective. In order to complete the proof of the proposition it is therefore enough to find a
continuous mapf : Σ → S2 such thatf∗ : H2(Σ,Z) → H2(S2,Z) is non-trivial because
then (g ◦ f )∗ = g∗ ◦ f∗ can not be trivial either. But from the assumption thatΣ is a closed
oriented surface it follows thatΣ is either diffeomorphic toS2 or to the connected sum of
finitely many copies of the two-dimensional torus. For all these cases it is easy to find a map
f with the desired properties by using, e.g., a suitable triangulation or cell decomposition
of Σ. �

Remark 3.3. Another proof ofProposition 3.4can be obtained as follows: As observed in
[12] statement (iii) inProposition 3.3is equivalent to the statement that for every smooth
mapf : Σ → G/T the induced bundle ofπ : G→ G/T (underf ) admits a section, i.e., is
trivializable. IfG is simply-connected then the bundleπ : G→ G/T is 2-universal (cf.[30])
so everyT -bundle onΣ is equivalent to aT-bundle onΣ induced by a mapf : Σ → G/T .
This implies that there is a 1-1-correspondence between the elements of [Σ,G/T ] and the
elements of the set of isomorphy classes ofT -bundles onΣ. Using obstruction theory one
can show that #[Σ,G/T ] = 1 iff H2(Σ,π2(G/T )) = 0. If Σ is non-compact the fact that

1 According to[14], Chap. V, Th. 7.1, the groupπ2(G/T ) is isomorphic to the subgroup of the (torsion-free)
groupπ1(T ) ∼= Ker(exp|t) ∼= Zdim(T ) which is generated by the inverse roots. For every non-Abelian compact
connected Lie group the set of inverse roots is non-empty soπ2(G/T ) is non-trivial (and torsion-free).
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Σ is homotopy equivalent to a one-dimensional CW-complex which we have mentioned
above impliesH2(Σ,π2(G/T )) = 0. If Σ is compact then from Poincaré duality we obtain
H2(Σ,π2(G/T )) ∼= H0(Σ,π2(G/T )) ∼= π2(G/T ) �= 0.

4. Heuristic computation of the Faddeev–Popov determinant for quasi-axial
gauge fixing and torus gauge-fixing

4.1. The Faddeev–Popov determinant: Some general considerations

LetM = Σ × S1 be as inSection 3. LetN be aG̃-invariant subset ofA and letF : A→
C∞(M, g) be a mapping with the property that for allA ∈ A\N there is exactly onẽΩA ∈ G̃
such thatF (AΩ̃A ) = 0 holds. Then, using very similar arguments as in[28], one obtains∫
A\N χ(A)DA = ∫A\N χ(A)∆[A]δ(F (A))DA for every G̃-invariant functionχ : A→ C.

Here∆[A], A ∈ A\N, is the “Faddeev–Popov-determinant” given by

∆[A] = det
δF (AΩ̃)

δΩ̃ |Ω̃=Ω̃A

. (4.1)

If N is sufficiently small that at a heuristic level one would expect∫
A
χ(A)DA =

∫
A\N

χ(A)DA (4.2)

to hold one finally obtains∫
A
χ(A)DA =

∫
A\N

χ(A)∆[A]δ(F (A))DA (4.3)

4.2. The Faddeev–Popov determinant for quasi-axial gauge-fixing

Throughout the rest of this paper we will assume thatΣ is two-dimensional. Moreover,
during the rest ofSection 4, we will also demand thatΣ or G is simply-connected. Let
us fix σ0 ∈ Σ and a setS ⊂ g with the same properties as the setS in Corollary 2.2(i).
Let Fqax

σ0,S
: A→ C∞(M, g) be given byFqax

σ0,S
(A) = (∂/∂t)A0 + (1− 1S(A0(σ0, t0))) for

A ∈ A, whereA0 is given byA|| = A0 dt and where 1S : g→ {0,1} is the indicator function
of S.

According toRemark 3.1one can argue at a heuristic level that theG̃-invariant set
Nqax := A\Areg is “negligible”. Thus, we can expectEq. (4.2) to hold withN replaced by
Nqax.

On the other hand it is easy to check that forA ∈ A we haveFqax
σ0,S

(A) = 0 iff A ∈
Aqax and simultaneouslyA0(σ0, t0) ∈ S. Thus,Proposition 3.1implies that for eachA ∈
A\Nqax = Areg there is a uniquẽΩA ∈ G̃ such thatFqax

σ0,S
(AΩ̃A ) = 0 holds. Consequently,

we obtainEq. (4.3) with F = F
qax
σ0,S

. In order to interpret the informal measureδ(F (A))DA

onA\Nqax = Areg note that

{A ∈ Areg | Fqax
σ0,S

(A) = 0} = A⊥ ⊕ C∞(Σ, g′reg; σ0, S)
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whereC∞(Σ, g′reg; σ0, S) := {B | B ∈ C∞(Σ, g′reg), B(σ0) ∈ S}. So we make the Ansatz

δ(F (A))DA = DA⊥ ⊗DSB whereDA⊥ is the informal “Lebesgue measure” onA⊥, and
whereDSB is the measure onC∞(Σ, g′reg; σ0, S) obtained as the image ofDg|C∞(Σ,Greg) un-

der the mappingC∞(Σ,Greg)  f �→ f̃σ0,S ∈ C∞(Σ, g′reg; σ0, S). HereDg is the informal
Haar measure onC∞(Σ,G).

From Eq. (4.1) with F = F
qax
σ0,S

we get forA⊥ ∈ A⊥, B ∈ C∞(Σ, g′reg; σ0, S) (taking

into account that̃ΩA ≡ 1 forA := A⊥ + B dt)

∆[A⊥ + B dt] ∼ |det((∂/∂t + ad(B)) · ∂/∂t)| ∼ |det(∂/∂t + ad(B))| =: ∆̃[B]

(4.4)

where with∂/∂t + ad(B) and∂/∂t we mean the obvious operators onC∞g (Σ × S1) and
where∼ denotes equality up to a constant independent ofB. SoEq. (4.3) now reads∫

A
χ(A)DA ∼

∫
C∞(Σ,g′reg;σ0,S)

[∫
A⊥

χ(A⊥ + B dt)DA⊥
]
∆̃[B]DSB (4.5)

with ∼ denoting equality up to a constant independent ofχ.
One can show that there is a sequence (Si)i∈N of subsets ofgwith the same properties as

the setS above such thatg′reg=
∐∞

i=1(Si ∩ g′reg) holds where
∐

denotes “disjoint union”.
For such a sequence (Si)i∈N we have

C∞(Σ, g′reg) =
∞∐
i=1

C∞(Σ, g′reg; σ0, Si)

For eachSi we can derive an analogue ofEq. (4.5) and by “averaging” over the right-hand
sides of these analogues of (4.5) we obtain∫

A
χ(A)DA ∼

∫
C∞(Σ,g′reg)

[∫
A⊥

χ(A⊥ + B dt)DA⊥
]
∆̃[B]DB (4.6)

whereDB :=∑i DSiB. Here we have identified eachDSiB with the obvious measure on
C∞(Σ, g′reg).

Heuristically, one should expect thatDB is “of product form”, i.e. DB =
(⊗Σµg′reg

)|C∞(Σ,g′reg) whereµg′reg
is a suitable measure ong′reg. More precisely, we should

haveµg′reg
= (exp|g′reg

)∗µG where (exp|g′reg
)∗µG denotes the “pullback” of the normal-

ized Haar measureµG onG w.r.t. exp|g′reg
(the notion of pullback defined with the help

of the associated volume forms w.r.t. to fixed orientations onG andg). By taking into
account that the differential of exp at the pointB0 ∈ g′reg is given by (d exp(B0)) =
exp(B0) ·∑∞

n=0 (ad(B0))n/(n+ 1)! and by using similar arguments2 as in the proof of Prop.
1.8 in Chap. IV in[14] we obtainµg′reg

(dB0) ∼ det(
∑∞

n=0 (ad(B0))n/(n+ 1)!)λg(dB0)

2 Note that our ad differs from the ad in[14] by a minus sign
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whereλg is the Lebesgue measure ong. This suggests the heuristic formula

DB = det

( ∞∑
n=0

(ad(B))n

(n+ 1)!

)
dB (4.7)

where dB is the informal Lebesgue measure onC∞(Σ, g). In particular, for AbelianGwe
should haveDB = dB. In Section 4.3below, the following variant of (4.6) will be useful:∫

A
χ(A)DA ∼

∫
C∞(Σ,S∗)

[∫
A⊥

χ(A⊥ + B dt)DA⊥
]
∆̃[B]DS∗B (4.8)

HereS∗ is a fixed connected component ofg′reg andDS∗B :=∑i∈I DSiB where (Si)i∈I
is a sequence of subsets ofg with the same properties as the setS above such thatS∗ =∐

i∈I (Si ∩ g′reg) holds (note thatI can be finite, e.g., in the case whereG is semisimple).

Remark 4.1. For functionsχ : A→ C with the property that
∫
A⊥ χ(A⊥ + B dt)∆[A⊥ +

B dt]DA⊥ is of the formf (exp(B)) for a suitable functionf one obtains immediately from
Eq. (4.5) (using exp(̃fσ0,S) = f )

∫
A χ(A)DA ∼ ∫ f (exp(B))DSB =

∫
C∞(Σ,Greg)

f (g)Dg

whereDg is as above. Iff is even a cylindrical function one can replace the space
C∞(Σ,Greg) by the space (Greg)Σ of arbitraryGreg-valued functions onΣ and the in-
formal measureDg by the product measure⊗Σ

(
(µG)|Greg

)
, whereµG is the normalized

Haar measure onG. Note that, even thoughΣ is uncountable, the measure⊗Σ
(
(µG)|Greg

)
is mathematically well-defined, cf., e.g.,[9].

4.3. An analogue of (4.6) for torus gauge-fixing

Let (·, ·)g denote the (well-defined) scalar productg× g  (A,B) �→ −Tr(AB) ∈ R (!)
on g. The norm associated to (·, ·)g will be denoted by| · |g. We fix once and for all a
maximal torusT of G. By g0 we denote the (·, ·)g-orthogonal complement oft in g, where
t is the Lie algebra ofT.

Let us consider the right-operation of the groupGΣ = C∞(Σ,G) on the spaceC∞(Σ, g)
given byB ·Ω0 = Ω−1

0 BΩ0 for B ∈ C∞(Σ, g), Ω0 ∈ GΣ. If GΣ is identified with the
obvious subgroup ofG = GM = C∞(M,G) thenGΣ also operates onA = AM . As this
operation is linear and asGΣ leaves the subspaceA⊥ of A invariant we have for every
G-invariant functionχ onA, everyΩ0 ∈ GΣ ⊂ G and everyB ∈ C∞(Σ, g):∫

χ(A⊥ + B dt)DA⊥ =
∫

χ((A⊥ + B dt) ·Ω0)DA⊥

=
∫

χ(A⊥ ·Ω0 + (Ω−1
0 BΩ0) dt)DA⊥

=
∫

χ(A⊥ + (Ω−1
0 BΩ0) dt)DA⊥

(here the last step follows becauseGΣ leaves the informal measureDA⊥ onA⊥ invari-
ant). This means that the function ˜χ(B) : C∞(Σ, g)  B �→ ∫

χ(A⊥ + B dt)DA⊥ ∈ C is
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GΣ-invariant. Moreover, fromEq. (4.4) above we obtain forB ∈ C∞(Σ, g), Ω0 ∈ GΣ

∆̃[B] = |det(∂/∂t + ad(B))| (∗)= |det(Ad(Ω0) ◦ (∂/∂t + ad(B)) ◦ Ad(Ω−1
0 ))|

(+)= |det(∂/∂t + ad(Ad(Ω0) · B))| = |det(∂/∂t + ad(B ·Ω0))| = ∆̃[B ·Ω0]

Here step (∗) follows because det(Ad(g)) = 1,g ∈ G (asG is compact) and step (+) follows
because∂/∂t commutes with Ad(Ω0) and because

∀ g ∈ G : B0 ∈ g : Ad(g−1) ◦ ad(B0) ◦ Ad(g) = ad(Ad(g−1) · B0) (4.9)

Thus, the functioñ∆[·] on C∞(Σ, g) is GΣ-invariant, too. By taking this into account and
by computing the functional determinant of the coveringθ̃ : G/T × t′reg→ g′reg given by

θ̃((gT, B)) = g · B · g−1, g ∈ G, B ∈ t′reg, one obtains fromEq. (4.6)

∫
A
χ(A)DA ∼

∫
C∞(Σ,t′reg)

[∫
A⊥

χ(A⊥ + B dt)DA⊥
]
∆̃(B)DB (4.10a)

where now

DB = det

( ∞∑
n=0

(ad(B))n

(n+ 1)!

)
· det

(−ad(B)|g0

)
dB

(∗)= det(idg0 − exp(ad(B)|g0)) dB (4.10b)

with dB denoting the “Lebesgue measure” onC∞(Σ, t). Here step (∗) holds because
det(
∑∞

n=0 (ad(B))n/(n+ 1)!) = det(
∑∞

n=0 (ad(B)|g0)n/(n+ 1)!).
In fact, a more careful analysis shows that in order to derive(4.10a)–(4.10b)one has to

make use of condition (iii) inProposition 3.3. In particular, ifΣ was assumed to be oriented
then according toProposition 3.4this means that we have to demand additionally thatΣ is
non-compact. In order to demonstrate this let us concentrate for simplicity on the special
case whereG is semisimple. Then every connected componentS∗ of g′reg is of the form
Ad(G) · P , whereP is a fixed alcove oft′reg. The restriction of̃θ : G/T × t′reg→ g′reg onto
the setG/T × P is a bijection onto the setS∗. This induces a bijectionψ : C∞(Σ,G/T )×
C∞(Σ,P) → C∞(Σ, S∗). Let j : C∞(Σ, S∗) → C∞(Σ,P) be given byj := pr2 ◦ ψ−1

wherepr2 : C∞(Σ,G/T )× C∞(Σ,P) → C∞(Σ,P) is the canonical projection.

Lemma 2. If Image(Φ) ⊃ Areg thenf = f ◦ j for everyGΣ-invariantf ∈ C∞(Σ, S∗).

Proof. It is not difficult to see thatj(B ·Ω0) = j(B) for B ∈ C∞(Σ, S∗), Ω0 ∈ GΣ so it is
enough to show thatf (B) = f (j(B)) holds for allB in a complete system of representatives
of C∞(Σ, S∗)/GΣ. The assumption on (Σ,G) that Image(Φ) ⊃ Areg holds and therefore
also statement (iii) inProposition 3.3is fulfilled implies thatC∞(Σ,P) is a complete system
of representatives ofC∞(Σ, S∗)/GΣ. The assertion ofLemma 2now follows from the fact
thatj restricted toC∞(Σ,P) is just the identity. �
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So if Image(Φ) ⊃ Areg holds then usingLemma 2and theGΣ-invariance of∆̃ andχ̃ we
obtain fromEq. (4.8)∫

A
χ(A)DA ∼

∫
C∞(Σ,S∗)

[∫
A⊥

χ(A⊥ + B dt)DA⊥
]
∆̃(B)DS∗B

=
∫
C∞(Σ,S∗)

χ̃(B)∆̃(B)DS∗B =
∫
C∞(Σ,S∗)

(χ̃ ◦ j)(B)(∆̃ ◦ j)(B)DS∗B

=
∫
C∞(Σ,P)

χ̃(B) ∆̃(B)DPB

=
∫
C∞(Σ,P)

[∫
A⊥

χ(A⊥ + B dt)DA⊥
]
∆̃(B)DPB (4.11)

whereDPB denotes the image measurej∗(DS∗B) of DS∗B underj. One has

DPB = j∗

(
det

( ∞∑
n=0

(ad(B))n

(n+ 1)!

)
1C∞(Σ,S∗)(B)dB

)

(∗)= det

( ∞∑
n=0

ad(B)n

(n+ 1)!

)
1C∞(Σ,P)(B) det(−ad(B)|g0)dB (4.12)

where the last dB denotes the heuristic Lebesgue measure onC∞(Σ, t). Here
step (∗) follows from j∗(dB) = det(−ad(B)|g0) dB and det(

∑∞
n=0 (ad(B))n/(n+ 1)!) =

det(
∑∞

n=0 ad(j(B))n/(n+ 1)!) (the latter equation follows easily fromEq. (4.9) above).
Using an infinite averaging procedure over all alcovesP one finally arrives at(4.10a) and
(4.10b).

5. Chern-Simons models

5.1. Basic definitions

In this subsection,M will denote an arbitrary compact, connected, and oriented 3-
manifold. Let us fixk ∈ Z\{0} and setλ := 1/k. The function

SCS : A  A �→ k

4π

∫
M

TrMat(N,C)

(
A∧dA+ 2

3
A∧A∧A

)
∈ C (5.1)

will be called “the action function of the pure Chern-Simons model onM with structure
groupG and chargek”. Here we have embeddedA into the spaceAMat(N,C) of all smooth
Mat(N,C)-valued 1-forms onM (recall thatg ⊂ u(N) ⊂ Mat(N,C)). In particular,∧ de-
notes the wedge product ofAMat(N,C).

Clearly,SCS is invariant under orientation-preserving diffeomorphisms. It has been sug-
gested by Witten[32] (see also, e.g.,[6]) that if one can make sense of the heuristic measure

µCS(dA) := 1

Z
exp(iSCS(A))DA (5.2)
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where “DA” is the heuristic “Lebesgue measure” onA and “Z” the normalization constant
“
∫

exp(iSCS(A))DA” one can obtain non-trivial link invariants by integrating certain func-
tions onA againstµCS . More precisely, for a given linkL in M, i.e., a tuple (l1, . . . , ln),
n ∈ N, of loops inM whose arcs are pairwise disjoint (a loop being a smooth embedding
of S1 into M) let us consider the function WLF(L) : A  A �→∏n

i=1 Tr(Hol(A; li)) ∈ C

where Hol(A; l) denotes the holonomy ofA aroundl. Due to the diffeomorphism invari-
ance ofSCS and hence also ofµCS , the heuristic integral WLO(L) := ∫ WLF(L) dµCS , the
so-called “Wilson loop observable associated to the linkL”, should depend only on the iso-
topy class ofL. So the mapping which maps every (sufficiently regular) linkL to WLO(L)
should be a link invariant. According to the standard literature in the special caseM = S3

andG = SU(N) (resp.SO(N)) this link invariant should be related to the Homfly (resp.
the Kauffman) polynomial, cf.[24].

Remark 5.1. Fromk ∈ Z it follows that exp(iSCS) is gauge invariant even thoughSCS itself
is not (cf., e.g.,[32,16]).

5.2. Chern-Simons models onM = Σ × S1

Now we restrict our attention to Chern-Simons models onM = Σ × S1, whereΣ is a
compact oriented surface.

Proposition 5.1. LetA ∈ A and letA⊥ ∈ A⊥ andA|| ∈ A|| be given byA = A⊥ + A||.
Then we have

SCS(A) = k

4π

[∫
Tr(A⊥ ∧ dA⊥)+ 2

∫
Tr(A⊥ ∧ A|| ∧ A⊥)

+2
∫

Tr(A⊥ ∧ dA||)
]

(5.3)

Proof. We have A ∧ A ∧ A = (A⊥ + A||) ∧ (A⊥ + A||) ∧ (A⊥ + A||) = A⊥ ∧ A|| ∧
A⊥ + A|| ∧ A⊥ ∧ A⊥ + A⊥ ∧ A⊥ + A|| (the other 5 summands clearly vanish). Thus, we
obtain (2/3)Tr(A ∧ A ∧ A) = (2/3) · 3 · Tr(A⊥ ∧ A|| ∧ A⊥). On the other handA ∧ dA =
(A⊥ + A||) ∧ (dA⊥ + dA||) = (A⊥ ∧ dA⊥)+ (A|| ∧ dA⊥)+ (A⊥ ∧ dA||)+ 0. But d(A⊥
∧ A||) = dA⊥ ∧ A|| − A⊥ ∧ dA|| and thus from Stokes Theorem we have 0= ∫ d(Tr(A⊥
∧ A||)) = ∫ Tr(dA⊥ ∧ A||)− ∫ Tr(A⊥ ∧ dA||). If one takes into account that Tr(A||
∧ dA⊥) = Tr(dA⊥ ∧ A||) one finally obtains (5.3). �

Definition 5.1. For every real vector spaceV and k ∈ {1,2} we will denote the space
of V -valued k-forms onΣ by Ωk(Σ,V ). We will call a functionα : S1 → Ωk(Σ,V )
smoothif for every k-tuple (Xi)i≤k of C∞-vector fields onΣ the functionΣ × S1 
(σ, t) �→ (α(t)((Xi)i≤k))σ ∈ V is C∞. The space of all smooth functionsS1 → Ωk(Σ,V )
will be denoted byC∞(S1,Ωk(Σ,V )). The mappingC∞(S1,Ωk(Σ,V ))  α �→ ∂/∂tα ∈
C∞(S1,Ωk(Σ,V )) where∂/∂tα is given by∂/∂t[α(t)((Xi)i≤k)σ ] = (∂/∂tα)(t)((Xi)i≤k)σ for
everyk-tuple (Xi)i≤k ofC∞-vector fields onΣ and everyσ ∈ Σ will be denoted by∂/∂t. Fi-
nally, we will setΩk(Σ) := Ωk(Σ,C),AΣ,V := Ω1(Σ,V ), andAΣ := AΣ,g = Ω1(Σ, g).



290 A. Hahn / Journal of Geometry and Physics 53 (2005) 275–314

During the rest of this paper we will identifyA⊥ with C∞(S1,AΣ) in the obvious way. In
particular, ifA⊥ ∈ A⊥ andt ∈ S1 thenA⊥(t) will denote an element ofAΣ.

Proposition 5.2. LetA ∈ Aqax and letA⊥ ∈ A⊥ ∼= C∞(S1,AΣ) andB ∈ C∞(Σ, g) be
given byA = A⊥ + B dt. Then we have

SCS(A) = SCS(A⊥ + B dt)

= − k

4π

∫
S1

dt
[〈

A⊥(t), (∂/∂t + ad(B)) · A⊥(t)
〉
Σ
− 2〈A⊥(t),dB〉Σ

]
(5.4)

where〈·, ·〉Σ denotes the bilinear form onAΣ given by〈A,A′〉Σ := ∫
Σ

Tr(A ∧ A′) for
A,A′ ∈ AΣ ⊂ AΣ,Mat(N,C).

Proof. For every α ∈ C∞(S1,Ω2(Σ)) let i(α) denote the complex 2-form onΣ ×
S1 induced byα. Then we have Tr(A⊥ ∧ dA||) = Tr(A⊥ ∧ d(B dt)) = Tr(A⊥ ∧ dB) ∧
dt = i(α1) ∧ dt with α1 ∈ C∞(S1,Ω2(Σ)) given by α1(t) = Tr[A⊥(t) ∧ dB], t ∈ S1.
On the other hand 2Tr(A⊥ ∧ A|| ∧ A⊥) = 2Tr(A⊥ ∧ B dt ∧ A⊥) = −Tr(A⊥ ∧ (ad(B) ·
A⊥)) ∧ dt = i(α2) ∧ dt with α2 ∈ C∞(S1,Ω2(Σ)) given by α2(t) = −Tr(A⊥(t) ∧
(ad(B) · A⊥(t))), t ∈ S1. Finally, using local coordinates it is not difficult to show that
Tr(A⊥ ∧ dA⊥) = i(α3) ∧ dt with α3 ∈ C∞(S1,Ω2(Σ)) given by α3(t) = −Tr(A⊥(t) ∧
(∂/∂t)A⊥(t))), t ∈ S1. The assertion of the proposition now follows immediately from the
following Lemma, which is easy to prove. �
Lemma 3. For everyα ∈ C∞(S1,Ω2(Σ)) the mappingS1  t �→ ∫

Σ
α(t) ∈ C is C∞ and

we have
∫
Σ×S1 i(α) ∧ dt = ∫

S1[
∫
Σ
α(t)] dt

6. Quasi-axial gauge fixing and torus gauge fixing for Chern-Simons models on
Σ × S1

6.1. Application of quasi-axial gauge fixing

Let Σ be as inSection 5.2. If we assume additionally thatΣ orG is simply-connected
then we can make use of (4.6) and the gauge invariance of WLF(L) and of exp(iSCS) (cf.
Remark 5.1) and we then obtain informally, with∼ denoting equality up to a multiplicative
constant, independent ofL,

WLO(L) =
∫

WLF (L)(A)
1

Z
exp(iSCS(A))DA ∼

∫
C∞(Σ,g′reg)

×
∫
A⊥

WLF (L)(A⊥ + B dt) exp(iSCS(A⊥ + B dt))DA⊥∆̃[B]DB

=
∫
C∞(Σ,g′reg)

[∫
A⊥

WLF (L)(A⊥ + B dt) dµ⊥B (A⊥)

]
∆̃[B]DB (6.1)

whereDA⊥ andDB are as in the Subsection 4.2 andµ⊥B , for B ∈ C∞(Σ, g′reg), is given

informally by dµ⊥B (A⊥) := exp(iSCS(A⊥ + B dt))DA⊥.
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According to Proposition 5.2, for fixed B ∈ C∞(Σ, g′reg) the function SCS(A⊥ +
B dt) on A⊥ is quadratic so the informal measureµ⊥B on A⊥ is of “Gauss-type”.
If one tries to compute the informal “mean” and “covariance operator” ofµ⊥B then,

at least3 for Abelian G, one is naturally lead to the decompositionA⊥ = Â⊥ ⊕
A⊥c , whereÂ

⊥
:= {A⊥ ∈ A⊥ | A⊥(t0) = 0},A⊥c := {A⊥ ∈ A⊥ | A⊥(t) = A⊥(t0) ∀ t ∈

S1} ∼= AΣ, cf. Remark 6.1, Remark 6.2, and Remark 8.2below. It is not difficult
to see thatSCS(A⊥ + B dt) = SCS(Â⊥ + B dt)− (k/4π)[

∫
S1 dt〈Â⊥(t),ad(B) · A⊥c 〉Σ +

〈A⊥c ,ad(B) · A⊥c 〉Σ − 2〈A⊥c ,dB〉Σ] so if one introduces Ẑ(B) = ∫ exp(iSCS(Â⊥ +
B dt))DÂ⊥ and

dµ̂⊥B (Â⊥) := 1

Ẑ(B)
exp(iSCS(Â⊥ + B dt))DÂ⊥ (6.2)

whereDÂ⊥ denotes the informal Lebesgue measure onÂ
⊥

one obtains from (6.1)

WLO(L) = 1

Z′

∫
C∞(Σ,g′reg)

[∫
A⊥c

[∫
Â
⊥ WLF (L)(Â⊥ + A⊥c + B dt)

× exp

(
−i k

4π

∫
S1

dt〈Â⊥(t),ad(B)A⊥c 〉Σ
)

dµ̂⊥B (Â⊥)

]

× exp

(
i
k

2π
〈A⊥c ,dB〉Σ

)
× exp

(
−i k

4π
〈A⊥c ,ad(B)A⊥c 〉Σ

)
DA⊥c

]

∆̃[B]Ẑ(B)DB (6.3)

where the normalization constantZ′ is given by the integral expression obtained from
the right-hand side of (6.3) by replacing the function WLF(L)(Â⊥ + A⊥c + B dt) by the
constant function taking only the value 1.

Let us now consider for a while the special case whereG is Abelian. We have assumed
above thatΣ orG is simply-connected.G can not be simply-connected if it is Abelian so
we are forced to restrict ourselves to the caseΣ ∼= S2. Furthermore, for AbelianGwe have
G = Greg, g = g′reg, ad(B)A⊥c = 0 andẐ(B)∆̃[B] does not depend onB which implies

Z′ = Ẑ(0)∆̃[0]
∫

exp(i(k/2π)〈A⊥c ,dB〉Σ)DA⊥c DB. Thus, (6.3) simplifies and we obtain

WLO(L) = 1

Z′′

∫
C∞(Σ,g)

[∫
A⊥c

[∫
Â
⊥ WLF (L)(Â⊥ + A⊥c + B dt)dµ̂⊥B (Â⊥)

]

× exp

(
i
k

2π
〈A⊥c ,dB〉Σ

)
DA⊥c

]
DB (6.4)

whereZ′′ = ∫ ∫ exp(ik/2π〈A⊥c ,dB〉Σ)DA⊥c DB.
In Sections 7–10, we will show how one can make sense of the right-hand side of(6.4).

3 If G is non-Abelian then it is possibly better to use the more complicated decomposition which is mentioned
in the last paragraph ofSection 6.1
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Remark 6.1. The reader may wonder why we chose to use the measure ˆµ⊥B onÂ
⊥

instead
of the measureµ⊥B onA⊥ even thoughEqs. (6.3) and (6.4) look more complicated thanEq.
(6.1). From a computational point of view the answer is that it is only because ˆµ⊥B “lives”

onÂ
⊥

that we can identify its “mean”m(B) and its “covariance operator”C(B). E.g., in the
special case whereG is Abelian or whereG is non-Abelian andB ∈ C∞(Σ, t′reg), m(B) is
given byEq. (8.7) below andC(B) is given byEq. (8.5) in Proposition 8.1combined with
Eq. (8.3). Note thatEqs. (8.7) and (8.3) are essential for the proof ofTheorem 10.1: (8.7)
is used in (10.4) and leads to the appearance of the expressions sgn(l

j

S1; u) in Eq. (10.1) in
Theorem 10.1. Eq. (8.3) is used in (10.12) and later leads to the appearance of the linking
number expressions inEq. (10.1). Closely related to this computational advantage is the
conceptual advantage that – based on the explicit expressions form(B) andC(B) – it is
possible to give a rigorous meaning to the integral functional

∫ · · ·dµ̂⊥B , at least for the
special caseB ∈ C∞(Σ, t′reg), cf. Section 8.2 below.

Remark 6.2. One could try to avoid the decompositionA⊥ = Â⊥ ⊕A⊥c or to use the
decompositionA⊥ = {A⊥ ∈ A⊥ | ∫

S1 A
⊥(t) dt = 0} ⊕A⊥c instead, i.e., the decomposition

of A⊥ into “zero-modes” and “non-zero modes”. The second option would at first look
have the advantage that also for non-AbelianG the term exp(−ik/4π ∫

S1 dt〈Â⊥(t),ad(B) ·
A⊥c 〉Σ) in the inner integral in (6.3) vanishes. However, one would still be forced to consider

the spaceÂ
⊥

later, cf.Remark 8.2below. Moreover, one would then have to insert the
expression exp(−i(k/2π)〈Â⊥(t0),dB〉Σ) into the inner integral in (6.3) which is clearly
more singular than exp(−i(k/2π)

∫
S1 dt〈Â⊥(t),ad(B) · A⊥c 〉Σ).

Also for non-AbelianG it should be possible to find a rigorous realization of the integral
functional

∫ · · ·dµ̂⊥B by modifying the approach inSection 8below. For example, the
decompositiong = t⊕ g0 which is used inSection 8will have to depend onσ (for each
σ, t will have to be replaced by the maximal Abelian Lie subalgebra which containsB(σ)).
By using this more complicated decomposition one obtains a version ofEq. (6.3) in which
no terms like

∫
S1 dt〈Â⊥(t),ad(B) · A⊥c 〉Σ and〈A⊥c ,ad(B) · A⊥c 〉Σ appear. Accordingly, this

modified version ofEq. (6.3) will look very similar toEq. (6.6) below.

6.2. Application of torus gauge fixing

Before one studies the integral functional
∫ · · ·dµ̂⊥B in more detail also for non-Abelian

G it is reasonable to ask first whether by using torus gauge fixing things can be simplified. As
above let us assume thatΣ is a compact oriented surface andΣ orG is simply-connected.
Then, according toProposition 3.4, the relation Image(Φ) ⊃ Areg, which was used for the
derivation ofEqs. (4.10a)–(4.10b) in Section 4, does not hold. Anyhow, let us study what
happens if we assume that (4.10a)–(4.10b) still hold. Under this assumption one can easily
derive a “torus gauge analogue” ofEq. (6.1) by replacingC∞(Σ, g′reg) by C∞(Σ, t′reg). In
particular, the measureDB will then be the measure ofSection 4.3. Let us now introduce

a “new” decompositionA⊥ = Â⊥ ⊕A⊥c by setting

Â
⊥

:= {A⊥ ∈ A⊥ | πAΣ,t(A
⊥(t0)) = 0} (6.5a)

A⊥c := {A⊥ ∈ A⊥ | A⊥(t) = A⊥(t0) ∈ AΣ,t ∀ t ∈ S1} ∼= AΣ,t (6.5b)
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HereπAΣ,t is the projection operator onto the second term in the direct sumAΣ
∼= AΣ,g0 ⊕

AΣ,t whereg0 is as in Subsec. 4.3. Note that ifA⊥c is an element of the “new” spaceA⊥c
then ad(B) · A⊥c = 0. So we obtain the following “torus gauge analogue” ofEq. (6.3)

WLO(L) = 1

Z

∫
C∞(Σ,t′reg)

[∫
A⊥c

[∫
Â
⊥ WLF (L)(Â⊥ + A⊥c + B dt)dµ̂⊥B (Â⊥)

]

× exp

(
i
k

2π
〈A⊥c ,dB〉Σ

)
DA⊥c

]
∆̃[B]Ẑ(B)DB (6.6)

whereẐ(B) andµ̂⊥B are defined in a similar way as above (cf. (6.2)) and whereZ is given
by

Z =
∫
C∞(Σ,t′reg)

∫
A⊥c

exp

(
i
k

2π
〈A⊥c ,dB〉Σ

)
∆̃[B]Ẑ(B)DA⊥c DB (6.7)

Below we will see that forB ∈ C∞(Σ, t′reg) one has informallyẐ(B) ∼ |det(∂/∂t +
ad(B))|−1/2 (with∼ denoting equality up to a multiplicative constant independent ofB), so

Ẑ(B)∆̃[B] ∼ |det(∂/∂t + ad(B)) |
|det(∂/∂t + ad(B)) |1/2 (6.8)

where the operator∂/∂t + ad(B) in the numerator is defined onC∞g (Σ × S1) and the oper-

ator∂/∂t + ad(B) in the denominator is defined onC∞(S1,AΣ). If we compareEq. (6.8)
with Eqs. (2.11) and (2.17) in[10] we see that the right-hand side ofEq. (6.7) coincides with
Eq. (2.18) in[10] (cf. also Eq. (6.33) in[10] which shows that the first fraction in Eq. (2.11)
in [10] is just a constant). By evaluating Eq. (2.18) in[10] explicitly Blau and Thompson
finally obtained the Verlinde formula (7.13) in[10]. However, in order to derive their Eq.
(7.13) they had to insert certain “correction terms”, given by Eq. (7.7) in[10], into Eq. (7.5)
in [10]. Later, in[12], they showed that these correction terms can be explained naturally
as those terms that appear if one modifies Eq. (7.5) in[10] in such a way that it takes into
account all the possible torus bundles onΣ and not only the trivial ones, cf. Eq. (6.8) in
[12] (cf. also ourRemark 3.3above). It is reasonable to expect that also forEq. (6.6) above
similar correction terms have to be considered. We expect that these correction terms will
only affect the outer integrations in (6.6). In the present paper, we will mainly be concerned
with the inner integration inEq. (6.6) (below we will study the outer integrations only for
AbelianG for which there are no correction terms). For this reason we will postpone the
search for the correct form of these correction terms to a forthcoming paper, see[18].

Remark 6.3. So far we have only considered the case whereΣ is compact. However, it is
straightforward to extend the framework given inSection 5so that also non-compact oriented
surfacesΣ can be treated, e.g., by replacing the spaceA by the space of 1-forms onM with
compact support and so on. According toProposition 3.4, for non-compact oriented surfaces
Σ the three equivalent conditions inProposition 3.3hold. Thus, non-compact surfacesΣ
have the advantage that one can actually “derive” (a non-compact version of)Eq. (6.6) at
an informal level. On the other hand non-compact surfaces also have several disadvantages.
For example, it is not clear whether the conditionk ∈ Z in Remark 5.1has to be replaced
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by a different condition, cf.[21]. By studying the non-compact version of (6.6) and the
implications for the values of the WLOs we hope to be able to shed some new light on this
point.

7. Some Notions and Results from White Noise Analysis

LetH be a real separable Hilbert space with norm‖ · ‖. LetK be a self-adjoint invertible
Hilbert–Schmidt operator onH whose Hilbert–Schmidt norm is strictly less than 1. We
defineNp := Image(Kp), p ∈ N0 andN := ⋂p∈N0

Np and introduce the norms‖ · ‖p :=
‖K−p(·)‖, p ∈ N0, onN. Then we equip the spaceN with the topology which is generated
by the family (‖ · ‖p)p∈N0. We denote the topological dual ofN byN∗.

According to the Minlos Theorem there is a unique Borel probability measureµ onN∗
with the property that for allx ∈ N the functionN∗  T �→ (T, x) ∈ R is a real Gaussian
random variable with mean 0 and variance‖x‖2. Here and in the sequel (·, ·) is the canonical
pairing betweenN∗ andN. For everyp ∈ N0, K−p induces a (densely defined) operator
Γ (K−p) onL2(N∗, µ) in a natural way, the so-called “second quantization” ofK−p (see
Section 3 C in[22]).

By P(N) (resp.E(N)) we denote the subalgebra ofCC(N∗) generated by the subset
{(·, x) | x ∈ N} (resp. the set{exp(i(·, x)) | x ∈ N}) of CC(N∗). We identifyP(N) andE(N)
with the obvious subspaces ofL2(N∗, µ). It can be shown (see section 3 C in [22]) that
P(N) is in the domain of all the operatorsΓ (K−p), so we can define scalar products〈〈·, ·〉〉p
onP(N) by 〈〈φ, φ′〉〉p := 〈〈Γ (K−p)φ, Γ (K−p)φ′〉〉 for everyφ, φ′ ∈ P(N), where〈〈·, ·〉〉 is
the scalar product onL2(N∗, µ). We denote the norm associated to〈〈·, ·〉〉p by ‖ · ‖p and
the completion ofP(N) w.r.t. ‖ · ‖p by (N)p. The extended norm on (N)p will again be
denoted by‖ · ‖p. Moreover, we identify the space (N)0 with L2

C
(N∗, µ) in the obvious

way and the spaces (N)p, p ∈ N, with the obvious subspaces of (N)0. Then we set (N) :=⋂
p(N)p and equip (N) with the topology which is generated by the family (‖ · ‖p)p∈N0.

The topological dual of (N) will be denoted by (N)∗. It is not difficult to see thatE(N)
⊂ (N).

Theorem 7.1. For every continuous quadratic formQ onN and every continuous lin-
ear forma onN there is a unique elementΦa,Q of (N)∗ such thatΦa,Q(exp(i(·, f ))) =
exp(ia(f )) exp(−(1/2)Q(f )) holds for allf ∈ N.

Proof. It can be shown that the mapN  f �→ exp(ia(f )) exp(−(1/2)Q(f )) ∈ C is a “U-
functional” in the terminology of[22]. From Theorem 4.38 in[22] the assertion follows.

�

Remark 7.1. We will call Φa,Q “the Gaussian element of (N)∗ with meana and covari-
anceQ” or simply “the Gaussian element of (N)∗ corresponding to (a,Q)”. By defini-
tion,Φa,Q is the unique elementΦ of (N)∗ with the property that the mappingN  f �→
Φ(exp(i(·, f ))) ∈ C, called the “T-transform ofΦ” equals exp(ia(·)) exp(−(1/2)Q(·)). Note
that theT-transform on (N)∗ can be considered as a generalization of the Fourier transfor-
mation on the space of bounded Borel measures onN∗.
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8. Rigorous implementation of the integral functional
∫ · · ·dµ̂⊥

B in (6.4)
and (6.6)

In the present section, we will make rigorous sense of the integral functional
∫ · · ·dµ̂⊥B ,

B ∈ C∞(Σ, t′reg), in Eq. (6.6) as a generalized distribution on a suitable extensionÂ
⊥

of

the spacêA
⊥

given by (6.5a). As for AbelianG the twoEqs (6.6) and (6.4)coincide we
will then also have made rigorous sense of the integral functional

∫ · · ·dµ̂⊥B in (6.4).

8.1. Some Preparations

Recall thatg0 denotes the (·, ·)g-orthogonal complement oft in g. As (·, ·)g is Ad-
invariantg0 is ad|t-invariant. So if we fixB0 ∈ t′regand make the identificationC∞(S1, g) ∼=
C∞(S1, g0)⊕ C∞(S1, t) then the operator∂/∂t + ad(B0) : C∞(S1, g) → C∞(S1, g) will
leave the two subspacesC∞(S1, g0) andC∞(S1, t) invariant.

From the fact thatB0 is in t′reg it follows that for all complex rootsα of g w.r.t. t and all
k ∈ Z one has 2πik + α(B0) �= 0 (cf. [15], 21.8.4.2). This implies that for everyk ∈ Z the
mapping (2πik · idg0 + ad(B0)|g0)⊗idC : g0 ⊗ C → g0 ⊗ C is injective and therefore also
bijective. So by expanding eachf ∈ C∞(S1, g0 ⊗ C) in a Fourier series we see that the op-
erator (∂/∂t + ad(B0))⊗idC : C∞(S1, g0 ⊗ C) → C∞(S1, g0 ⊗ C) and therefore also the
operator∂/∂t + ad(B0) : C∞(S1, g0) → C∞(S1, g0) is bijective.

On the other hand the constant functions onS1 taking values int are in the kernel but
not in the image of the operator∂/∂t + ad(B0) : C∞(S1, t) → C∞(S1, t) so this operator
is neither injective nor surjective. Let us therefore consider the extensionC̄∞(S1, t) of
C∞(S1, t) consisting of all thoset-valued functionsf onS1 which areC∞ when considered
as functions on the semi-open interval [0,1) and which have the additional property that the
derivativef ′ isC∞ when considered as a function onS1 again. More precisely,̄C∞(S1, t)
consists of thoset-valued functionsf on S1 such thatf ◦ iS1 : [0,1)→ S1 is C∞ and,
additionally, (∂/∂t)f := (f ◦ iS1)′ ◦ i−1

S1 is an element ofC∞(S1, t) (here (f ◦ iS1)′(0) is the
obvious one-sided derivative in the point 0). It is not difficult to derive the following explicit
formula forC̄∞(S1, t), which will be helpful below:

C̄∞(S1, t) = C∞(S1, t)⊕ {D0 · i−1
S1 (·) | D0 ∈ t} (8.1)

The operator∂/∂t : C∞(S1, t) → C∞(S1, t) can be extended in an obvious way to an
operatorC̄∞(S1, t) → C∞(S1, t), which will also be denoted by∂/∂t. This operator is
surjective but neither injective nor anti-symmetric w.r.t. the inner product ofL2

t (S
1, dt).

However, there is a unique subspaceC̃∞(S1, t) of C̄∞(S1, t) such that the restriction
∂/∂t : C̃∞(S1, t) → C∞(S1, t) is both bijective and anti-symmetric w.r.t. the inner product
of L2

t (S
1,dt). Using (8.1), it is easy to see that this subspace is given by

C̃∞(S1, t) = Ĉ∞(S1, t)⊕
{
D0 ·

(
i−1
S1 (·)− 1

2

)
| D0 ∈ t

}

= {f ∈ C̄∞(S1, t) | lim
u↓0

f (iS1(u))+ lim
u↑1

f (iS1(u)) = 0} (8.2)

whereĈ∞(S1, t) := {f ∈ C∞(S1, t) | f (t0) = 0}.
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As the operator∂/∂t : C̃∞(S1, t) → C∞(S1, t), which clearly coincides with∂/∂t +
ad(B0) : C̃∞(S1, t) → C∞(S1, t), is bijective we also obtain a bijective operator
∂/∂t + ad(B0) : C̃∞(S1, g) → C∞(S1, g) where we have set̃C∞(S1, g) := C∞(S1, g0)⊕
C̃∞(S1, t). Moreover, this operator is anti-symmetric w.r.t. the inner product ofL2

g(S
1,dt).

The inverse of this operator will be denoted by (∂/∂t + ad(B0))−1. It has the following
properties:

(O1) When restricted ontoC∞(S1, t) the operator (∂/∂t + ad(B0))−1 coincides with
(∂/∂t)−1 : C∞(S1, t) → C̃∞(S1, t). It is given by

((∂/∂t + ad(B0))−1f )(iS1(u))

= ((∂/∂t)−1f )(iS1(u)) = 1

2

[∫ u

0
f (iS1(s)) ds−

∫ 1

u

f (iS1(s)) ds

]
(8.3)

for allf ∈ C∞(S1, t),u ∈ [0,1). In particular, (∂/∂t + ad(B0))−1 maps to the constant
function onS1 taking only the valueD0 ∈ t to the functionS1  t �→ (i−1

S1 (t)− 1/2) ·
D0 ∈ t.

(O2) (∂/∂t + ad(B0))−1 : C∞(S1, g) → C̃∞(S1, g) ⊂ L2
g(S

1,dt) is anti-symmetric w.r.t.

the scalar product ofL2
g(S

1,dt).

(O3) Let‖ · ‖∞ be the sup-norm on̄C∞(S1, g) (w.r.t. | · |g). Eq. (8.3) shows that (∂/∂t)−1 :
C∞(S1, t) → C̃∞(S1, t) is ‖ · ‖∞-continuous. InRemark 8.1below, we show that
the same is true for the restriction of (∂/∂t + ad(B0))−1 ontoC∞(S1, g0). From this it
follows that also the original operator (∂/∂t + ad(B0))−1 : C∞(S1, g) → C̃∞(S1, g)
is ‖ · ‖∞-continuous.

Remark 8.1. The operator (∂/∂t + ad(B0))−1 : C∞(S1, g0) → C∞(S1, g0) is ‖ · ‖∞-
continuous. This can be seen as follows:

Let f ∈ C∞(S1, g0) and set g := (∂/∂t + ad(B0))−1 · f ∈ C∞(S1, g0). Using the
method of “variation of constants” one can easily derive the following explicit formula
for g:

∀ u ∈ [0,1] : g(iS1(u)) =
∫ u

0
exp((s− u) · ad(B0))f (iS1(s)) ds

+ g(iS1(0)) exp(−u · ad(B0)) (8.4)

Because ofg(iS1(1))= g(t0) = g(iS1(0)) we obtain for the special caseu = 1:

(exp(ad(B0)|g0)− idg0) · g(t0) =
∫ 1

0
exp(s · ad(B0))f (iS1(s)) ds

From the assumption thatB0 ∈ t′reg it follows that for every complex rootαwe haveα(B0) /∈
2πiZ so 1 is not an eigenvalue of exp(ad(B0)|g0) which means that exp(ad(B0)|g0)− idg0 ∈
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End(g0) is invertible. So we obtain

|g(t0)|g =
∣∣∣∣∣(exp(ad(B0)|g0)− idg0

)−1 ·
∫ 1

0
exp(s · ad(B0))f (iS1(s)) ds

∣∣∣∣∣
g

Without loss of generality we can assume that|g(t0)|g = ‖g‖∞ (note that instead of the
mappingiS1 in 8.4we can use any other mapping which is obtained fromiS1 by a translation).
From this we obtain immediately‖(∂/∂t + ad(B0))−1 · f‖∞ = ‖g‖∞ ≤ M‖f‖∞ with a
suitable constantM > 0 independent off.

8.2. A rigorous implementation of
∫ · · ·dµ̂⊥B

Let us fixB ∈ C∞(Σ, t′reg). LetC̄∞(S1,AΣ) be defined in an analogous way as the space

C̄∞(S1, g) above, i.e., we set̄C∞(S1,AΣ) := C∞(S1,AΣ,g0)⊕ C̄∞(S1,AΣ,t), where
C̄∞(S1,AΣ,t) := C∞(S1,AΣ,t)⊕ {D · i−1

S1 (·) | D ∈ AΣ,t}, cf. (8.1) above. Moreover, we

set C̃∞(S1,AΣ) := C∞(S1,AΣ,g0)⊕ C̃∞(S1,AΣ,t), where C̃∞(S1,AΣ,t) := Ĉ∞(S1,

AΣ,t)⊕ {D · (i−1
S1 (·)− 1/2) | D ∈ AΣ,t} with Ĉ∞(S1,AΣ,t) := {A⊥ ∈ C∞(S1,AΣ,t) |

A⊥(t0) = 0}, cf. (8.2) above.∂/∂t will denote the obvious operator̄C∞(S1,AΣ) →
C∞(S1,AΣ) andVF (Σ) the space of smooth vector fields onΣ.

Definition 8.1.By 〈·, ·〉M we denote the bilinear form on̄C∞(S1,AΣ) given by〈A,A′〉M =∫
S1〈A(t), A′(t)〉Σ dt for all A,A′ ∈ C̄∞(S1,AΣ).

Proposition 8.1.

(i) The operator∂/∂t + ad(B) : C̃∞(S1,AΣ) → C∞(S1,AΣ) is bijective and its inverse
(∂/∂t + ad(B))−1 : C∞(S1,AΣ) → C̃∞(S1,AΣ) is given by

((∂/∂t + ad(B))−1 · A⊥)(·)(Xσ) = (∂/∂t + ad(B(σ)))−1 · (A⊥(·)(Xσ)) (8.5)

for all A⊥ ∈ C∞(S1,AΣ), X ∈ VF (Σ), σ ∈ Σ where (∂/∂t + ad(B(σ)))−1 is as in
Section 8.1.

(ii) The operators∂/∂t + ad(B) : C̃∞(S1,AΣ) → C∞(S1,AΣ) and (∂/∂t + ad(B))−1 :
C∞(S1,AΣ) → C̃∞(S1,AΣ) are anti-symmetric w.r.t.〈·, ·〉M .

Proof. Part (i): That∂/∂t + ad(B) is injective follows immediately from the fact that for
eachσ ∈ Σ the mapping∂/∂t + ad(B(σ)) : C̃∞(S1, g) → C∞(S1, g) is injective. More-
over, as each∂/∂t + ad(B(σ)) : C̃∞(S1, g) → C∞(S1, g) is also surjective the right-hand
side ofEq. (8.5) is well-defined for allA⊥ ∈ C∞(S1,AΣ), X ∈ VF (Σ), andσ ∈ Σ. Thus,
there is a unique functionA⊥0 : S1 → AΣ such thatA⊥0 (·)(Xσ) = (∂/∂t + ad(B(σ)))−1 ·
(A⊥(·)(Xσ)) for all X ∈ VF (Σ) andσ ∈ Σ. One can show thatA⊥0 is indeed an element of
C̃∞(S1,AΣ). Finally, it is a trivial matter to check that (∂/∂t + ad(B)) · A⊥0 = A⊥, which
implies that∂/∂t + ad(B) is surjective and that (8.5) holds.
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Part (ii): Making use of the fact that the maps∂/∂t + ad(B(σ)) : C̃∞(S1, g) →
C∞(S1, g), σ ∈ Σ, are anti-symmetric w.r.t. the inner product ofL2

g(S
1,dt) the anti-

symmetry of∂/∂t + ad(B) follows from a short computation which involves the definitions
of 〈·, ·〉M and〈·, ·〉Σ. This implies immediately that also (∂/∂t + ad(B))−1 is anti-symmetric
w.r.t. 〈·, ·〉M . �

Let us set

m(B) := (∂/∂t + ad(B))−1 · dB = (∂/∂t)−1 · dB ∈ C̃∞(S1,AΣ,t) (8.6)

FromProposition 8.1and (O1) above it follows that

m(B)(t) = (i−1
S1 (t)− 1

2) · dB for all t ∈ S1 (8.7)

Let us recall the definition of the spaceÂ
⊥

in (6.5a) (which coincides with the spaceÂ
⊥

in Section 6.1if G is Abelian). Clearly,

C̃∞(S1,AΣ) = C∞(S1,AΣ,g0)⊕ Ĉ∞(S1,AΣ,t)⊕ {D · (i−1
S1 (·)− 1/2) | D ∈ AΣ,t}

= Â⊥ ⊕ {D · (i−1
S1 (·)− 1

2) | D ∈ AΣ,t}

soÂ⊥ −m(B) ∈ C̃∞(S1,AΣ) for everyÂ⊥ ∈ Â⊥ .
Consequently, by taking into accountProposition 5.2, Eq. (8.6), the anti-symmetry of

∂/∂t + ad(B) on C̃∞(S1,AΣ) w.r.t. the anti-symmetric bilinear form〈·, ·〉M , and the two

relations〈m(B),dB〉M = 0 and ad(B)dB = 0 we obtain forÂ⊥ ∈ Â⊥

SCS(Â⊥ + B dt) = − k

4π
〈Â⊥ −m(B), (∂/∂t + ad(B)) · (Â⊥ −m(B))〉M (8.8)

Remark 8.2.Eq. (8.8) will not hold if we replacêA⊥ ∈ Â⊥ by a general elementA⊥ ∈ A⊥.
Instead, one then obtains

SCS(A⊥ + B dt)

= − k

4π
[〈A⊥ −m(B), (∂/∂t + ad(B)) · (A⊥ −m(B))〉M + 〈A⊥(t0),dB〉Σ]

So if we had not introduced the decomposition (6.5) above we would now be lead to it more
or less automatically in order to deal appropriately with the singular term〈A⊥(t0),dB〉Σ.

At first look Eq. (8.8) seems to suggest that the heuristic measure (6.2) onÂ
⊥

is “Gaus-
sian” with “mean”m(B) and “covariance operator”−(2πi/k)(∂/∂t + ad(B))−1 w.r.t.〈·, ·〉M .
However, as〈·, ·〉M is not a scalar product one has to be more careful. In order to ob-
tain a genuine scalar product let us now fix an auxiliary Riemannian metricg on Σ,

which we have so far avoided. Then we obtain a scalar product〈〈·, ·〉〉
Â
⊥ on Â

⊥
given

by 〈〈Â⊥1 , Â⊥2 〉〉Â⊥ =
∫
S1(
∫
Σ

(Â⊥1 (t), Â⊥2 (t))g dµg) dt for all Â⊥1 , Â
⊥
2 ∈ Â

⊥
whereµg de-

notes the Riemannian volume measure onΣ associated tog and where (·, ·)g is the fibre
metric on the bundle Hom(TΣ, g) ∼= TΣ∗ ⊗ g induced byg and (·, ·)g. Note that〈〈·, ·〉〉

Â
⊥

is just the restriction ontôA
⊥

of the standard scalar product〈〈·, ·〉〉L2 of the Hilbert space
L2-Γ (Hom(TM, g), µg ⊗ dt) of L2-sections of the bundle Hom(TM, g) w.r.t. the measure
µg ⊗ dt on M. Here we have equipped Hom(TM, g) ∼= TM∗ ⊗ g with the obvious fibre
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metric. In the sequel, we will identify the completion (H, 〈〈·, ·〉〉H) of the Pre-Hilbert space

(Â
⊥
, 〈〈·, ·〉〉

Â
⊥ ) with the obvious closed subspace ofL2-Γ (Hom(TM, g), µg ⊗ dt).

Remark 8.3.

(i) After the identifications mentioned above we have the inclusionÂ
⊥ ⊂ A⊥ ⊂

C̄∞(S1,AΣ) ⊂ H ⊂ L2−Γ (Hom(TM, g), µg ⊗ dt). In particular, we haveA⊥ ⊂
H ∩A.

(ii) The Hodge star operatorC onΩ1(M)⊗ g ∼= A (where we have equippedM = Σ × S1

with the product ofg with the standard Riemannian metric onS1) leaves the subspace
A⊥ ofA invariant. Thus, we obtain a linear operator onA⊥ → A⊥ which can be shown
to be bijective and‖ · ‖H-bounded. Its continuous extension to a linear isomorphism
ofH will also be denoted byC.

We can now rewrite (8.8) in the form

SCS(Â⊥ + B dt) = − k

4π
〈〈Â⊥ −m(B), (C ◦ (∂/∂t + ad(B))) · (Â⊥ −m(B))〉〉H

(8.9)

where C : H→ H is as in Remark 8.3(ii). Eq. (8.9) suggests that the heuristic mea-

sure (6.2) onÂ
⊥

is “Gaussian” with “mean”m(B) and “covariance operator”C(B) :=
−(2πi/k)(∂/∂t + ad(B))−1 ◦ C−1 w.r.t. 〈〈·, ·〉〉H and thatẐ(B) ∼ |det(∂/∂t + ad(B))|−1/2.
Informally, the Fourier transformationFµ̂⊥B of µ̂⊥B is given by

Fµ̂⊥B (Â⊥0 ) =
∫

exp(i〈〈Â⊥0 , Â⊥〉〉H) dµ̂⊥B (Â⊥)

= exp(i〈〈Â⊥0 ,m(B)〉〉H)

× exp (iπλ〈〈Â⊥0 , ((∂/∂t + ad(B))−1 ◦ C−1)Â⊥0 〉〉H) ∀ Â⊥0 ∈ Â
⊥

(8.10)

Let us now explain how, with the help of (8.10), it is possible to make rigorous sense of

the integral functional
∫ · · ·dµ̂⊥B as a generalized distribution on a suitable extensionÂ

⊥

of the spacêA
⊥

.
Let ∆ : Ω·(M) → Ω·(M) denote the Hodge-Laplace operator onM = Σ × S1. It is

easy to show that∆ leavesA⊥ invariant so∆|A⊥ can be considered as an operator on

H with dense domainA⊥. One can prove that the operatorK := (−∆|A⊥ + 1)−1 is a
self-adjoint Hilbert–Schmidt operator onH. So we can apply the machinery ofSection
7 to the pair (H,K) obtaining the spacesN, N∗, P(N), E(N), (N), and (N)∗. Using a
Sobolev embedding argument one can prove thatN = A⊥ ∼= C∞(S1,AΣ). Consequently,
the following definition makes sense:

Definition 8.2.Let a⊥B denote the linear form onN given bya⊥B (j) = 〈〈j,m(B)〉〉H for all
j ∈ N. LetC0(B) : N→ C̄∞(S1,AΣ) ⊂ Hdenote the linear operator given byC0(B) · j =
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((∂/∂t + ad(B))−1 ◦ C−1) · j for all j ∈ N. and letQ⊥
B denote the bilinear form onN given

by

Q⊥
B (j1, j2) = 〈〈j1, C0(B)j2〉〉H (∗)=−〈j1, (∂/∂t + ad(B))−1j2〉M (8.11)

for all j1, j2 ∈ N. Here step (∗) follows becauseC · (∂/∂t + ad(B))−1 = (∂/∂t + ad(B))−1 ·
C andC−1 = −C. From (8.11) and the fact that (∂/∂t + ad(B))−1 : N→ C̄∞(S1,AΣ) is
anti-symmetric w.r.t.〈·, ·〉M (cf. Proposition 8.1) and the bilinear form〈·, ·〉M is anti-
symmetric itself it follows immediately that the bilinear formQ⊥

B is symmetric. Hence,
also the operatorC0(B) onH is symmetric.

Remark 8.4.We observe that while the linear forma⊥B depends on the special choice of the
Riemannian metricg onΣ the bilinear formQ⊥

B does not.

As the standard topology onN is finer than the topology induced by‖ · ‖H it follows imme-
diately that the linear forma⊥B is continuous. One can show that the densely defined operator
C0(B) onH is bounded, from which it follows immediately that alsoQ⊥

B is continuous.
However, instead of giving the details of the last argument we prefer to give a direct proof
for the the continuity ofQ⊥

B .

Proposition 8.2. The bilinear formQ⊥
B onN is continuous.

Proof. Let ‖ · ‖∞ denote the norm on̄C∞(S1,AΣ) which is given by ‖A⊥‖∞ =
supt∈S1 supσ∈Σ supXσ∈TσΣ,‖Xσ‖g≤1 |A⊥(t)(Xσ)|g,A⊥ ∈ A⊥. It is easy to see that〈·, ·〉M is a

‖ · ‖∞-continuous bilinear form on̄C∞(S1,AΣ). Moreover, we know from (O3) inSection
8.1 that for eachσ ∈ Σ the operator (∂/∂t + ad(B(σ)))−1 : C∞(S1, g) → C̃∞(S1, g) con-
sidered as a densely defined operator onC̄∞(S1, g) is continuous w.r.t.‖ · ‖∞. Let ‖ · ‖
denote the operator norm of (C̄∞(S1, g), ‖ · ‖∞). Then it is not difficult to see thatMB :=
supσ∈Σ ‖(∂/∂t + ad(B(σ)))−1‖ <∞. Eq. (8.5) then implies‖(∂/∂t + ad(B))−1 · A⊥‖∞ ≤
MB‖A⊥‖∞ for everyA⊥ ∈ C∞(S1,AΣ). The assertion now follows fromEq. (8.11). �

Taking into accountTheorem 7.1, Remark 7.1, Proposition 8.2, andEq. (8.10)above we
now arrive at the following rigorous realization of the informal integral functional

∫ · · ·dµ̂⊥B
as a generalized distributionΦ⊥B onN∗ =: Â

⊥
.

Definition 8.3.The Gaussian element of (N)∗ corresponding to (a⊥B ,−2πλiQ⊥
B ) will be

denoted byΦ⊥B .

9. Regularization techniques

9.1. Admissible links

LetπΣ (resp.πS1) denote the canonical projectionΣ × S1 → Σ (resp.Σ × S1 → S1).
For every curvec in Σ × S1, i.e., every smooth function [0,1] → Σ × S1, we setcΣ :=
πΣ ◦ c andcS1 := πS1 ◦ c.

Let C = (c1, . . . , cr), r ∈ N, be anr-tuple of curves inΣ × S1. A double point ofC
(resp. a triple point ofC) is an elementp of Σ with the property that the intersection of
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Fig. 1. ε(p) = −1.

Fig. 2. ε(p) = 1.

π−1
Σ ({p}) with the union of the arcs of the curvesc1, . . . , cr contains at least two (resp.

three) elements. We will denote the set of double points ofC byDP(C).
In the sequel we will identify every “loop”l in Σ × S1 in the sense ofSection 5.1with

the curvel ◦ iS1 and every “link” inΣ × S1 with the obvious finite tuple of curves.

Definition 9.1. A link L = (l1, . . . , ln), n ∈ N, in Σ × S1 is called admissible iff the fol-
lowing conditions are fulfilled:

(A1) There are only finitely many double and no triple points ofL.
(A2) For all i, j ≤ n and allv̄, ū ∈ [0,1] such thatliΣ(v̄) = l

j
Σ(ū) the two tangent vectors

(liΣ)′(v̄) and (ljΣ)′(ū) are not parallel to each other and. In particular, both vectors are
non-zero.

(A3) (li
S1)−1({t0}) is finite for all i ≤ n.

(A4) For all i ≤ n andu ∈ [0,1] such thatliΣ(u) ∈ DP(L) we haveli
S1(u) �= t0

For every admissible two-component link (l, l̃) in Σ × S1 we set

LK∗(l, l̃) :=
∑

p∈DP(l,l̃)\(DP(l)∪DP(l̃))

1

2
ε(p),

where for everyp ∈ DP(l, l̃) the numberε(p) ∈ {−1,1} is given byε(p) := −1 in the
situation ofFig. 1andε(p) := 1 in the situation ofFig. 2. Note that for a sufficiently small
neighborhoodU of p property (A4) of the link (l, l̃) implies that the parts of the arcs ofl and
l̃which are contained inU × S1 can be considered to be subsets ofU × (S1\{t0}) ∼= U × R.
(For a rigorous definition ofε(p) see Eq. (10.14) below).

Remark 9.1. If ( lS1)−1({t0}) and (̃lS1)−1({t0}) are empty then LK∗(l, l̃) coincides with the
linking number LK(l, l̃) of l andl̃.
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9.2. Loop smearing

In Section 8, we succeeded in defining the integral functional
∫ · · ·dµ̂⊥B as a (generalized)

distributionΦ⊥B on Â
⊥ = N∗. For sufficiently regular linksL and fixedB ∈ C∞(Σ, t′reg),

A⊥c ∈ A⊥c we would now like to useΦ⊥B to make sense of
∫
WLF (L)(Â⊥ + A⊥c +

B dt) dµ̂⊥B (Â⊥). If Â⊥ ∈ Â⊥ thenWLF (L)(Â⊥ + A⊥c + B dt) is obtained by solving an
ODE involving the expression (Â⊥ + A⊥c + B dt)(l′(u)), u ∈ [0,1]. Unfortunately, for a

general element̂A⊥ ∈ Â⊥ = N∗ the expression̂A⊥(l′(u)) makes no sense.
This problem can be solved by “smearing” the loops considered: We will replace the

expressionÂ⊥(l′(u)) by another expression (the〈Â⊥, hlε (u)〉 below) which is obtained
using a “smearing” ofl, i.e., a family (lε(u))u∈[0,1],ε>0 of test functions such that for all
u ∈ [0,1], ε > 0 the support oflε(u) is contained in anε-neighborhood ofl(u). Later we
will let ε go to zero. More precisely, let us fix two families (ηεt′ )ε>0,t′∈S1 and (ψε

σ′ )ε>0,σ′∈Σ
such thatηεt′ ∈ C∞(S1,R),ηεt′ ≥ 0,

∫
ηεt′ (t) dt = 1, supp(ηεt′ ) ⊂ Bε(t′) andψε

σ′ ∈ C∞(Σ,R),
ψε
σ′ ≥ 0,

∫
ψε
σ′ (σ) dµg(σ) = 1, supp(ψε

σ′ ) ⊂ Bε(σ′) for all t′ ∈ S1, ε > 0 whereBε(t′) (resp.
Bε(σ′)) is the open ball inS1 (resp.Σ) aroundt′ (resp.σ′) with radiusε w.r.t. the standard
distance functiondS1 on S1 (resp. the distance functiondg on Σ which is induced by
g). Below (cf. Remark 9.2) we will give some additional conditions which the family
(ψε

σ′ )ε>0,σ′∈Σ has to fulfill. For every loopl in M and everyu ∈ [0,1] we definelε(u) ∈
C∞(M,R) by

lε(u)(σ, t) := ψε
lΣ(u)(σ)ηεl

S1(u)(t) for all σ ∈ Σ, t ∈ S1 (9.1)

Let C∞(S1, VF (Σ)) be defined in an analogous way asC∞(S1,AΣ) in Definition 5.1. As
Σ is compact there is aε0 > 0 such that for allσ1, σ2 ∈ Σ with dg(σ1, σ2) ≤ ε0 there is
a unique segmentγ(σ1, σ2) starting inσ1 and ending inσ2 (cf. [27], Chap. 5). For every
u ∈ [0,1] andε < ε0 we therefore obtain an elementhl

ε
(u) of C∞(S1, VF (Σ)) which is

given by

[hl
ε

(u)(t)](σ) =
{
PTγ(lΣ(u),σ)(l

′
Σ(u))lε(u)(σ, t), if σ ∈ Bε(lΣ(u)),

0, if σ /∈ Bε(lΣ(u))

for all t ∈ S1 wherePTγ(lΣ(u),σ) is the parallel transport operator alongγ(lΣ(u), σ) w.r.t.
the Levi-Civita connection.

Let 〈·, ·〉 : C∞(S1,AΣ)× C∞(S1, VF (Σ)) → g denote the bilinear map given by
〈Â⊥, h〉 = ∫ [∫ Â⊥(t)(h(t)) dµg

]
dt, Â⊥ ∈ C∞(S1,AΣ), h ∈ C∞(S1, VF (Σ)). The ex-

pression〈Â⊥, hlε (u)〉, Â⊥ ∈ Â⊥ ⊂ C∞(S1,AΣ), can be considered as a “smeared ana-
logue” of Â⊥(l′(u)). In order to find the generalization of〈Â⊥, hlε (u)〉 for an arbitrary ele-
mentÂ⊥ ofN∗ we have to rewrite the expression〈Â⊥, hlε (u)〉 in terms of the pairing (·, ·)
betweenN∗ andN. For this purpose consider the linear isomorphismξ : VF (Σ) → AΣ,R

given byασ(jσ) = (ασ, ξ(j)σ)g for all α ∈ AΣ,R, j ∈ VF (Σ), σ ∈ Σ where (·, ·)g denotes
the fiber metric onTΣ∗ which is induced byg. For eacha ≤ dimg,u ∈ [0,1],f lε

a (u) will de-
note the element ofC∞(S1,AΣ,R)⊗ g ∼= A⊥ = N given byf lε

a (u)(t) := ξ(hl
ε
(u)(t))⊗ Ta
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for all t ∈ S1, where (Ta)a is a fixed ONB ofg. Clearly,〈Â⊥, hlε (u)〉 =∑a Ta(Â
⊥, f lε

a (u)).
As
∑

a Ta(Â
⊥, f lε

a (u)) is defined for arbitrarŷA⊥ ∈ N∗ we can now introduce a “smeared”
holonomy Hol(̂A⊥, lε;A⊥c , B) for Â⊥ ∈ N∗, A⊥c ∈ A⊥c , B ∈ C∞(Σ, t′reg), by setting

Hol(Â⊥, lε;A⊥c , B) := Plε

Â⊥,A⊥c ,B
(1) where (Plε

Â⊥,A⊥c ,B
(u))u∈[0,1] is the unique solution of

the ODE with values in Mat(N,C) given byPlε

Â⊥,A⊥c ,B
(0)= 1Mat(N,C) and

d

du
Plε

Â⊥,A⊥c ,B
(u)− Plε

Â⊥,A⊥c ,B
(u) ·

(∑
a

Ta(Â
⊥, f lε

a (u))+ (A⊥c + B dt)(l′(u))

)
= 0

(9.2)

for all u ∈ [0,1]. Here “·” is the standard multiplication of Mat(N,C).
We set WLF (Lε)(Â⊥ + A⊥c + B dt) :=∏n

i=1 TrMat(N,C)(Hol(Â⊥, lεi ;A⊥c , B)). The
mappingN∗  Â⊥ �→ WLF (Lε)(Â⊥ + A⊥c + B dt) ∈ C will be denoted byWLF (Lε)(· +
A⊥c + B dt).

Proposition 9.1. For every link L in Σ × S1, every ε > 0 and all A⊥c ∈ A⊥c , B ∈
C∞(Σ, t′reg) we haveWLF(Lε)(· + A⊥c + B dt) ∈ (N).

Proposition 9.1is obvious ifG is Abelian because then one hasWLF (Lε)(· + A⊥c +
B dt) ∈ E(N) ⊂ (N), cf. Eq. (10.2) below. IfG is non-Abelian the situation is not so easy
anymore but one can obtain a proof forProposition 9.1also in the non-Abelian case by
adapting the proof of Proposition 6 in[21] in a suitable way.

Remark 9.2. For the proof ofTheorem 10.1below to work it will be necessary to im-
pose a suitable smoothness condition on the function-valued mappingsΣ  σ′ �→ ψε

σ′ ∈
C∞(Σ,R), ε > 0. Instead of trying to identify an appropriate smoothness condition we will
restrict ourselves to special families (ψε

σ′ )ε>0,σ′∈Σ of the form

ψε
σ′ =

1

Nε
σ′

1

ε2ψ

(
1

ε
dg(·, σ′)

)
with Nε

σ′ := 1

ε2

∫
ψ

(
1

ε
dg(σ, σ′)

)
dµg(σ)

for all σ′ ∈ Σ andε < ε0 whereψ is any fixed smooth functionR+ → R+ with supp(ψ) ⊂
[0,1] and the additional property that4 ψ̄ := ψ ◦ ‖ · ‖ ∈ C∞(R2,R) where‖ · ‖ is the stan-
dard Euclidean norm onR2. The last condition implies thatψ( 1

ε
dg(·, σ′)) is indeedC∞ for

eachσ′ ∈ Σ and each sufficiently smallε > 0.

9.3. Framing

One could hope that limε→0 Φ
⊥
B (WLF(Lε)(· + A⊥c + B dt)) exists forB ∈ C∞(Σ, t′reg),

A⊥c ∈ A⊥c , andL contained in a sufficiently large setL of links in Σ × S1 and that after
performing also the

∫ · · ·DA⊥c and
∫ · · ·DB-integrations inEq. (6.6) one obtains a link

4 One can show thatψ ◦ ‖ · ‖ ∈ C∞(R2,R) if and only if ψ is the restriction ontoR+ of a smooth symmetric
functionR→ R.
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invariant. However, when one tries to compute the limit limε→0Φ
⊥
B (WLF(Lε)(· + A⊥c +

B dt)) already in the simplest caseG = U(1) a problem arises, the so-called “self-linking
problem”, cf., e.g.,[20,21]. Witten suggested in[32] to solve the self-linking problem by
using a regularization procedure which he called “framing”. We will use an implementation
of this framing procedure which is adapted to our “quasi-axial setting” and which works
well also for non-AbelianG (cf. again[20,21] for a motivation of this implementation):

We choose a suitable family (φs)s>0 of diffeomorphisms ofΣ × S1 such thatφs ◦
lk

s→0−→ lk, k ≤ n. We can then computeWLO(Lε, φs;A⊥c , B) := Φ⊥B,φs (WLF(Lε)(· + A⊥c +
B dt)) whereΦ⊥B,φs is the “deformed version” ofΦ⊥B obtained by deforming the quadratic

formQ⊥
B onA⊥ = N in a certain way. Later we letε ands go to zero.

Proposition 9.2. Let φ be a diffeomorphism ofΣ × S1 and letφ∗ : A→ A denote the
pull-back ofφ. Then the following three statements are equivalent:

(C1) φ∗(Aqax) = Aqax

(C2) φ∗(Aqax(T )) = Aqax(T ), whereT is any fixed maximal torus of G.
(C3) There is a(unique) diffeomorphismφ̄ of Σ, a smooth mappingv : Σ → S1 and a

numberβ ∈ {−1,1} such thatφ(σ, t) = (φ̄(σ), v(σ) · tβ) holds for allσ ∈ Σ, t ∈ S1,
where“ ·” is the standard multiplication ofS1 ∼= U(1).

Proof. It is easy to see that statement (C3) implies both (C1) and (C2). That, conversely,
each of the two statements (C1) and (C2) implies (C3) is more difficult to see but not
essential for what follows, so we will omit the corresponding proofs. �

Definition 9.2. A diffeomorphismφ of Σ × S1 fulfilling the three equivalent conditions
(C1)–(C3) will be called “compatible with the quasi-axial gauge”.

Letφ be a diffeomorphism ofΣ × S1 which is compatible with the quasi-axial gauge. One
can show that statement (C3) impliesφ∗(A⊥) = A⊥. In view of this relation it is tempting
to try to use the pullbackφ∗ (or rather (φ−1)∗) for the deformation of the quadratic form
Q⊥

B onA⊥ = N. However, it will turn out that this approach will not work, cf.[20,21] for
the discussion of a similar question which arises when studying Chern-Simons models on
R

3 in axial gauge. Instead the elements ofN = A⊥ ought to transform like vector fields
under the deformation byφ.

Let VF (M) denote the space of smooth vector fields onM and let us setVF⊥(M) :=
{X ∈ VF (M) | dt(X) = 0}. Let φ∗ denote the linear automorphism ofVF (M)⊗ g which
is induced byφ. φ∗ does not leave the subspaceVF⊥(M)⊗ g ∼= A⊥ = N of VF (M)⊗ g
invariant butpr ◦ φ∗ does wherepr is the obvious projectionVF (M)⊗ g→ VF⊥(M)⊗ g
(here we have used the identificationVF⊥(M)⊗ g ∼= A⊥ which is induced by the stan-
dard Riemannian metric onS1 and the linear mappingξ : VF (Σ) → AΣ,R introduced in
Section. 9.2). It is not difficult to see thatpr ◦ φ∗ : VF⊥(M)⊗ g→ VF⊥(M)⊗ g is a linear
automorphism.

The linear automorphism onN = A⊥ obtained frompr ◦ φ∗ by transport with the iso-
morphism which identifiesVF⊥(M)⊗ gwithN = A⊥ will be denoted byφ∗. A straightfor-
ward computation shows that ifj ∈ A⊥ ∼= VF⊥(M)⊗ g thenφ∗(j) ∈ A⊥ ∼= VF⊥(M)⊗ g



A. Hahn / Journal of Geometry and Physics 53 (2005) 275–314 305

is given by (φ∗(j))(t) = φ̄∗(j(t)) for all t ∈ S1 whereφ̄∗ : TΣ → TΣ is the ordinary tangent
mapping which is induced bȳφ : Σ → Σ (cf. Proposition 9.2).

Definition 9.3.LetB ∈ C∞(Σ, t′reg) and letφ be a diffeomorphism ofΣ × S1 which is com-

patible with the quasi-axial gauge. ByQ⊥
B,φ we will denote the (continuous) real quadratic

form onN given byQ⊥
B,φ(j) = Q⊥

B (j, φ∗(j)) for all j ∈ N. Q⊥
B,φ will also denote the real

symmetric bilinear form obtained by polarization, i.e., the (continuous) real symmetric
bilinear form onN given by

Q⊥
B,φ(j1, j2) = 1

2

[
Q⊥

B (j1, φ∗(j2))+Q⊥
B (j2, φ∗(j1))

]
for allj1, j2 ∈ N (9.3)

Definition 9.4. Let B andφ be as above. We will denote the Gaussian element of (N)∗
corresponding to (a⊥B ,−2πλiQ⊥

B,φ) byΦ⊥B,φ (cf. Section 7).

Definition 9.5. LetL = (l1, . . . , ln),n ∈ N, be an admissible link inΣ × S1. An admissible
framing ofL is a family (φs)s>0 of diffeomorphisms ofΣ × S1 with the following properties:

(F1) Eachφs, s > 0, is compatible with the quasi axial gauge and we haveφ∗s (νg ∧ dt) =
νg ∧ dt whereνg is the positively oriented volume form associated tog.

(F2) For alli, j ≤ n and all sufficiently smalls > 0 the pair (li, φs ◦ lj) is an admissible
link in Σ × S1.

(F3) ∀ i ≤ n: φs ◦ li s→0−→ li dg-uniformly and lims→0 LK∗(li, φs ◦ li) exists.

Remark 9.3.In [18], we will replaceLK∗(li, φs ◦ li) in (F3) byLK(li, φs ◦ li).

10. Computation of the WLOs for the special caseΣ = S2 andG = U(1)

Let us now restrict ourselves to the situation ofEq. (6.4), i.e., let us assume thatG is
Abelian andΣ = S2. Clearly, for AbelianG the bilinear formQ⊥

B does not depend onB
so we can setQ⊥ := Q⊥

B .
In Section 10.1, we will evaluate the inner integral of(6.4)at a rigorous level using the

regularization procedures which we have introduced inSection 9. As we will show in[18] it
is also possible to give a rigorous meaning to the heuristic (Gauss-type) integral functional∫ · · ·exp(i(k/2π)〈A⊥c ,dB〉Σ)DA⊥c ⊗DB. In the present paper, we content ourselves with
dealing with this integral functional at a heuristic level. We do this by integrating first against
DB and then againstDA⊥c in Section 10.2 below. This is possible if the linkL = (l1, . . . , ln)

considered has the additional property thatt0 /∈ Image(lj
S1), j ≤ n.

10.1. The integration
∫ · · ·dµ̂⊥B

For simplicity we will only treat the special caseN = 1 andG = U(1). In this case,
we haveT = G = U(1) andt′reg= t = u(1). The results which we derive for this special
Abelian group can be generalized easily to arbitraryN ∈ N and arbitrary closed connected
Abelian subgroups ofU(N). Taking into accountProposition 9.1we obtain
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Theorem10.1.LetL = (l1, . . . , ln),n ∈ N,be an admissible link inΣ × S1 and let(φs)s>0
be an admissible framing of L. Then

WLO(L, (φs)s>0;A⊥c , B) := lim
s↘0

lim
ε↘0

Φ⊥B,φs (WLF (Lε)(· + A⊥c + B dt)) exists

for all A⊥c ∈ A⊥c , B ∈ C∞(Σ, t) and setting l
j
Σ := (lj)Σ, l

j

S1 := (lj)S1, lk∗j :=
lims→0 LK∗(lj, φs ◦ lj), andIj := (lj

S1)−1({t0}) for j ≤ n, we obtain

WLO(L, (φs)s>0;A⊥c , B)

=
∏
j

exp(λπi lk∗j )
∏
j �=k

exp(λπiLK∗(lj, lk))

×
∏
j


exp

(∫
l
j

Σ

A⊥c

)
exp


∑

u∈Ij
sgn(lj

S1; u) · B(ljΣ(u))




 (10.1)

wheresgn(lj
S1; u) = 1 (resp.−1 resp. 0)if the loop lj

S1 crossest0 at u in the direction of

the orientation ofS1 (resp. crossest0 at u in the opposite direction resp. does not cross but
only touchest0 at u).

Proof. Let L, n, (φs)s>0, A⊥c , andB be as in the assertion and letε ∈ (0, ε0), whereε0 is

as inSection 9.2. Clearly,i = T1 ∈ u(1) so settingf lε
j (u) := f

lε
j

1 (u) we have

WLF (Lε)(Â⊥ + A⊥c + B dt)

= exp

(
i

(
Â⊥,

∑
k

∫ 1

0
f lε

k (u) du

))∏
j

[
exp

(∫
l
j

Σ

A⊥c

)
exp

(∫
lj

B dt

)]

(10.2)

so fromDefinition 9.4we obtain

Φ⊥B,φs (WLF (Lε)(· + A⊥c + B dt))

= exp

(
iπλQ⊥

φs

(∑
k

∫ 1

0
f lε

k (u) du

))
exp


i a⊥B


∑

j

∫ 1

0
f
lε
j (u) du






×
∏
j

[
exp

(∫
l
j

Σ

A⊥c

)
exp

(∫
lj

B dt

)]
(10.3)

Let us setlj
R

:= i−1
S1 ◦ ljS1 − 1/2, j ≤ n. Then

lim
ε→0

ia⊥B

(∫ 1

0
f
lε
j (u) du

)
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= i

∫ 1

0

[
lim
ε→0

〈〈f lε
j (u),m(B)〉〉H

]
du

(∗)=
∫ 1

0

[
l
j

R
(u)

d

du
B(ljΣ(u))

]
du (10.4)

Here step (∗) follows from Eq. (8.7),
∫
S1(i−1

S1 (t)− 1/2)ηε
l
j

S1(u)
(t) dt

ε→0−→ l
j

R
(u) for all u /∈

Ij = (lj
S1)−1({t0}), and∫
Σ

(
T1 ⊗ ξ(PT

γ(lj
Σ

(u),·)((l
j
Σ)′(u)) ψε

l
j

Σ
(u)

),dB

)
g

dµg

= −T1

∫
Σ

ψε

l
j

Σ
(u)

dB(PT
γ(lj

Σ
(u),·)((l

j
Σ)′(u))) dµg

ε→0−→ 1

i
dB((ljΣ)′(u))

= 1

i

d

du
B(ljΣ(u))

HerePT
γ(lj

Σ
(u),·)((l

j
Σ)′(u)) denotes the vector fieldσ �→ PT

γ(lj
Σ

(u),σ)
((ljΣ)′(u)).

On the other hand from
∫
lj
B dt = ∫ 1

0 B(ljΣ(u)) · (lj
S1)′(u) du and (lj

S1)′(u) = (lj
R

)′(u) it
follows

exp

(∫ 1

0
l
j

R
(u)

d

du
B(ljΣ(u)) du

)
exp

(∫
lj

B dt

)

= exp

(∫ 1

0

{
l
j

R
(u)

d

du
B(ljΣ(u))+ B(ljΣ(u)) · (lj

R
)′(u)

}
du

)
(10.5)

Let nj := #Ij and let (si)i≤nj be the unique strictly increasing sequence of [0,1] such that
Ij = {si | i ≤ nj}. Without loss of generality let us assume that 0∈ Ij. Restricted onto each

of the open intervals (si, si+1) the curvelj
R

will be C1 and foru ∈ (si, si+1) we will have

( d
duB(ljΣ(u))) · lj

R
(u)+ B(ljΣ(u)) · (lj

R
)′(u) = d

du [B(ljΣ(u)) · lj
R

(u)] so we obtain∫ 1

0

{
l
j

R
(u)

d

du
B(ljΣ(u))+ B(ljΣ(u)) · (lj

R
)′(u)

}
du

=
∑
i

∫ si+1

si

d

du

[
l
j

R
(u) · B(ljΣ(u))

]
du =

∑
i

sgn(lj
S1; si) · B(ljΣ(si))

because sgn(lj
S1; si) = lims↑si l

j

R
(s)− lims↓si l

j

R
(s). Thus, we have

lim
ε→0

exp

(
ia⊥B

(∫ 1

0
f
lε
j (u) du

))
exp

(∫
lj

B dt

)
=
∏
i

exp(sgn(lj
S1; si) · B(ljΣ(si)))

(10.6)
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Finally, we have forj, k ≤ n, for all s > 0 andε > 0

Q⊥
φs

(∫ 1

0
f lε

k (v) dv,
∫ 1

0
f
lε
j (v) dv

)

=
∫ 1

0
dv
∫ 1

0
duQ⊥

φs
(f lε

k (v), f lε
j (u))

= 1

2

∫ 1

0
dv
∫ 1

0
du[Q⊥(f lε

k (v), (φs)∗(f lε
j (u)))+Q⊥((φs)∗(f lε

k (v)), f lε
j (u))]

(10.7)

Recall that (lj, φs ◦ lk) is admissible ifs > 0 is sufficiently small (cf. (F2) in Definition 9.5).
So fromLemma 4andLemma 5below and (F3) in Definition 9.5 we obtain

lim
s→0

lim
ε→0

Q⊥
φs

(∫ 1

0
f lε

k (v) dv,
∫ 1

0
f
lε
j (v) dv

)

= 1

2
lim
s→0

[
LK∗(lk, φs ◦ lj)+ LK∗(φs ◦ lk, lj)

] =
{

LK∗(lj, lk), if j �= k

lk∗j , if j = k
(10.8)

Eq. (10.1) now follows fromEqs. (10.3), (10.6), and (10.8). �
Lemma 4. For every admissible link(l, l̃) in Σ × S1 we have

lim
ε→0

Q⊥
(∫ 1

0
f lε (v) dv,

∫ 1

0
f l̃ε (u) du

)
= LK∗(l, l̃)

Proof. According to the definition of LK∗(l, l̃) it is enough to show that for all
v′, v′′, u′, u′′ ∈ [0,1] with v′ < v′′, u′ < u′′ and the additional property thatlΣ([v′, v′′]) ∩
l̃Σ([u′, u′′]) contains exactly one elementp of D := DP(l, l̃)\(DP(l) ∪DP(l̃)) we have

lim
ε→0

∫ v′′

v′
dv
∫ u′′

u′
du Q⊥(f lε (v), f l̃ε (u)) = 1

2
ε(p) (10.9)

Let v̄ ∈ [v′, v′′], ū ∈ [u′, u′′] be given byp = lΣ(v̄) = l̃Σ(ū). For simplicity let us assume in
the sequel that̄v, ū /∈ {0,1} (it is not difficult to generalize the proof to the general situation).
Then it is easy to see that there is aδ > 1 such that for sufficiently smallε > 0 we have∫ v′′

v′
dv
∫ u′′

u′
du Q⊥(f lε (v), f l̃ε (u)) =

∫ v̄+δε

v̄−δε
dv
∫ ū+δε

ū−δε
du Q⊥(f lε (v), f l̃ε (u))

(10.10)

On the other hand

Q⊥(f lε (v), f l̃ε (u))

= 〈〈f lε (v), (∂/∂t)−1 · C−1 · f l̃ε (u))〉〉H
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=
∫
S1

dt
∫
Σ

(T1 ⊗ ξ(hl
ε

(v)(t)), (∂/∂t)−1 · C−1 · (T1 ⊗ ξ(hl̃
ε

(u)(t))))g dµg

(∗)=
∫
S1

dt
∫
Σ

νg((hl
ε

(v))(t), (∂/∂t)−1(hl̃
ε

(u))(t)) dµg

=
∫
S1

dt ηεl
S1(v)(t)((∂/∂t)

−1ηε
l̃
S1(u))(t)

×
∫
Σ

νg

(
PTγ(lΣ(v),·)(l′Σ(v)), PTγ(l̃Σ(u),·)(l̃

′
Σ(u))

)
ψε
lΣ(v)ψ

ε
l̃Σ(u) dµg

(10.11)

where the last two “(∂/∂t)−1” denote the operator (∂/∂t)−1 : C∞(S1,R) → C̃∞(S1,R)
defined in the obvious way. Step (∗) above holds because (∂/∂t)−1 commutes withC−1 and
because we have (ξ(j), C−1 · ξ(j′))g = νg(j, j′) for all j, j′ ∈ VF (Σ), which is easy to show.

Using (A4) inDefinition 9.1and the real-valued analogue of (8.3) it follows for suffi-
ciently smallε > 0∫

S1
ηεl

S1(v)(t)(∂/∂t)
−1ηε

l̃
S1(u)(t) dt = 1

2
[1l̃

S1(ū)<l
S1(v̄) − 1l

S1(v̄)<l̃
S1(ū)] (10.12)

where< is the order relation onS1 which is induced byiS1 : [0,1)→ S1. Clearly, we have
for all σ ∈ Σ

νg(PTγ(lΣ(v),σ)(l
′
Σ(v)), PTγ(l̃Σ(u),σ)(l̃

′
Σ(u))) = νg(l′Σ(v), l̃′Σ(u)) (10.13)

So we obtain

lim
ε→0

∫ v̄+δε

v̄−δε
dv
∫ ū+δε

ū−δε
du Q⊥(f lε (v), f l̃ε (u))

(+)= 1

2
[1l̃

S1(ū)≤l
S1(v̄) − 1l

S1(v̄)≤l̃
S1(ū)] lim

ε→0

∫ v̄+δε

v̄−δε
dv
∫ ū+δε

ū−δε
duνg(l′Σ(v), l̃′Σ(u))

×
∫
Σ

ψε
lΣ(v)ψ

ε
l̃Σ(u) dµg

(∗)= 1

2
[1l̃

S1(ū)≤l
S1(v̄) − 1l

S1(v̄)≤l̃
S1(ū)] νg(l′Σ(v̄), l̃′Σ(ū))

× lim
ε→0

∫ v̄+δε

v̄−δε
dv
∫ ū+δε

ū−δε
du
∫
Σ

ψε
lΣ(v)ψ

ε
l̃Σ(u) dµg

provided that limε→0
∫ v̄+δε
v̄−δε dv

∫ ū+δε
ū−δε du

∫
Σ
ψε
lΣ(v)ψ

ε
l̃Σ(u)

dµg exists. Here step (+) follows

from (10.11)–(10.13) and step (∗) follows because the map (v, u) �→ νg(l′Σ(v), l̃′Σ(u)) is
continuous and does not vanish in the point (v̄, ū) and is therefore either strictly positive or
strictly negative on a neighborhood of (v̄, ū). It is not difficult to see thatε(p) is given by

ε(p) = sgn(νg(l′Σ(v̄), l̃′Σ(ū))) · [1l̃
S1(ū)<l

S1(v̄) − 1l
S1(v̄)<l̃

S1(ū)] (10.14)
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so equation (10.9) will follow once we have shown that

lim
ε→0

∫ v̄+δε

v̄−δε
dv
∫ ū+δε

ū−δε
du
∫
Σ

ψε
lΣ(v)ψ

ε
l̃Σ(u) dµg = 1

|νg(l′Σ(v̄), l̃′Σ(ū))| (10.15)

We observe that for every chartx : U → V ⊂ R
2 of Σ around p such that

νg(∂/∂x1, ∂/∂x2)(p) = 1 we haveνg(l′Σ(v̄), l̃′Σ(ū))) = (l′Σ(v̄))1(l̃′Σ(ū))2 − (l′Σ(v̄))2(l̃′Σ(ū))1
where (l′Σ(v̄))i and (̃l′Σ(ū))i, i = 1,2, denote the coordinates ofl′Σ(v̄) and l̃′Σ(ū) w.r.t. to
(∂/∂x1, ∂/∂x2). If we take this into account and if we also take into accountRemark 9.2
above and compareEq. (10.15) above with equation (22) in[20] we see thatEq. (10.15)
holds at least in the special case where the auxiliary Riemannian metricg was chosen such
that eachp ∈ DP(L) has an open neighborhoodU such thatg is Euclidean onU. The proof
of (10.15) in the general situation will be given elsewhere. �
Lemma 5. For every admissible link(l, l̃) inΣ × S1 and everys > 0 such that(φs ◦ l, l̃) is
admissible we have

lim
ε→0

∫ 1

0
dv
∫ 1

0
du Q⊥((φs)∗(f lε (v)), f l̃ε (u))

= lim
ε→0

∫ 1

0
dv
∫ 1

0
du Q⊥(f (φs◦l)ε (v), f l̃ε (u)) (10.16)

Lemma 5can be proved in a similar way as Eq. (29) in[20]. We will give a detailed proof
of Lemma 5elsewhere.

10.2. The integrations
∫ · · ·DB and

∫ · · ·DA⊥c

Now that we made rigorous sense of the inner integral inEq. (6.4) for every fixed
admissible framing (φs)s>0 we replace

∫
WLF(L)(Â⊥ + A⊥c + B dt)dµ̂⊥B (Â⊥) in Eq. (6.4)

by WLO(L, (φs)s>0;A⊥c , B) and set

WLO(L, (φs)s>0)

:= 1

Z′′

∫ ∫
WLO(L, (φs)s>0;A⊥c , B) exp

(
i
k

2π
〈A⊥c ,dB〉Σ

)
DA⊥c DB

For simplicity we will now restrict ourselves to (admissible) linksL = (l1, . . . , ln), n ∈ N,
with the additional propertyt0 /∈ Image((lj)S1), i.e.,Ij = ∅, for everyj ≤ n. In this special
case,WLO(L, (φs)s>0;A⊥c , B) does not depend onB and the two integrations

∫ · · ·DB and∫ · · ·DA⊥c can be performed in a straightforward way. According to (10.1) andRemark 9.1
we then have

WLO(L, (φs)s>0) =
∏
j

exp(λπilk∗j )
∏
j �=k

exp(λπiLK∗(lj, lk))

× 1

Z′′

∫ ∫ ∏
j

exp

(∫
l
j

Σ

A⊥c

)
exp

(
i
k

2π
〈A⊥c ,dB〉Σ

)
DA⊥c DB

=
∏
j

exp(λπilkj)
∏
j �=k

exp(λπiLK( lj, lk)) (10.17)
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because, informally,

1

Z′′

∫ ∫ ∏
j

exp

(∫
l
j

Σ

A⊥c

)
exp

(
i
k

2π
〈A⊥c ,dB〉Σ

)
DA⊥c DB

(+)= 1

Z′′

∫ [∫
exp

(
i
k

2π

∫
Σ

Tr(dA⊥c · B)

)
DB

]∏
j

exp

(∫
l
j

Σ

A⊥c

)
DA⊥c

(†)= const.
1

Z′′

∫
δ(dA⊥c )

∏
j

exp

(∫
l
j

Σ

A⊥c

)
DA⊥c

(∗)= const.
1

Z′′

∫
δ(dA⊥c ) exp(0)DA⊥c

= 1

Z′′

∫ ∫
exp

(
i
k

2π

∫
Σ

Tr(dA⊥c · B)

)
DBDA⊥c

(++)= Z′′

Z′′
= 1

Step (†) follows fromDB = dB (cf. Subsec. 5.2), step (∗) follows becauseH1(Σ) = 0 for
Σ = S2. SoA⊥c is closed iff it is exact but for exactA⊥c one has

∫
l
j

Σ

A⊥c = 0. Steps (+) and

(++) follow from Stokes’ Theorem.

Remark 10.1.In [18], we will consider the case of general admissible linksL = (l1, . . . , ln)
in Σ × S1. It will turn out that there is an interesting interplay between the LK∗(li, lj)-,
the
∫
l
j

Σ

A⊥c -, and the sgn(lj
S1; u)B(ljΣ(u))-expressions inEq. (10.1) which finally leads to

linking number expressions LK(li, lj) also in the more general situation where the winding

numbers ofli
S1 andlj

S1 vanish butIi andIj are not necessarily empty5.

11. Conclusions and Outlook

In the present paper, we studied Chern-Simons models on manifolds of the formM =
Σ × S1 using quasi-axial gauge fixing and later also torus gauge fixing. For the case where
Σ or the structure groupG of the model is simply-connected we exploited the properties
of quasi-axial gauge fixing and derived certain heuristic integral expressions for the WLOs
of the model. These integral expressions, i.e the right-hand sides ofEq. (6.3) andEq. (6.4),
which is the Abelian special case of (6.3), have some promising features. In particular, the
inner integrals in(6.3) and (6.4)are of “Gaussian type”. We expect that because of this it
will eventually be possible to find a rigorous realization of these expressions both in the
case of Abelian and of non-AbelianG.

Of course, for AbelianG it has already been demonstrated by other methods that it is
possible to obtain a rigorous definition of the WLOs in terms of path integral expression,
cf., e.g.,[3,25,1]. However, when using an approach based on Lorentz gauge fixing like

5 The winding numbers ofli
S1 andlj

S1 vanish iff li andlj are 0-homologous. Ifli andljare not 0-homologous
then LK(li, lj) is in general not defined
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in [3,25] or one that is based on a suitable discretization of the base manifold like in[1]
the difference between the Abelian and the non-Abelian situation seems to be so large that
completely new techniques are required for the treatment of the non-Abelian case. Quasi-
axial gauge fixing has the big advantage that when this gauge-fixing procedure is applied
the difference between the Abelian and the non-Abelian situation becomes much smaller.
Not surprisingly, there is also a price we have to pay when we want to use quasi-axial gauge
fixing: due to the appearance of some rather singular expressions on the right-hand side of
Eq. (6.4) the treatment of the Abelian case is, at least at first look, more difficult than the
treatment of the Abelian case in[3,25,1]. Anyhow, as we showed inSection 7–10for the
special caseG = U(1) it is still possible to make sense of the right-hand side ofEq. (6.4)
by using regularization procedures like “loop smearing” and “framing” and constructions
from white noise analysis.

Before one tries to find a rigorous realization of the right-hand side of the non-Abelian
generalizationEq. (6.3) of Eq. (6.4) it is reasonable to discuss first the question whether,
by using torus gauge fixing instead of quasi-axial gauge fixing, things can be simplified
even further. For non-compactΣ torus gauge fixing is a “proper” gauge in the sense
that at least every “regular” connection (i.e., every element ofAreg) is gauge equiva-
lent to a connection in the torus gauge, cf.Proposition 3.4and Remark 3.1. So Eq.
(6.6) makes sense for non-compactΣ and we expect that one can evaluate the WLOs
explicitly for arbitraryG by using the “cluster decomposition” technique developed in
[21] for the study of Chern-Simons models on the non-compact manifoldR

3 in axial
gauge.

On the other hand, due to certain topological obstructions, torus gauge fixing can
not be applied without modifications ifΣ is compact. In other words one should ex-
pect thatEq. (6.6), to which one is lead if one neglects the topological obstructions
just mentioned, has to be replaced by a more complicated equation. The considerations
in [10–12] where torus gauge fixing was exploited for the study of the partition func-
tions of Chern-Simons models on manifolds of the formΣ × S1 give already a certain
idea of how this modification ofEq. (6.6) has to look like. We will come back to this
point in [18]. In the present paper, we have restricted ourselves mainly to the study
of the inner integral in (6.6), which will most probably not be affected by the modifi-
cation of (6.6) just mentioned. This study can thus be seen as the first step of a pro-
gram which, as we expect, will eventually lead both to a rigorous path integral repre-
sentation for the WLOs of non-Abelian Chern-Simons models on the compact manifold
M = S2 × S1 and to a new, and purely geometric derivation of the R-matrices of Jones and
Turaev.
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